

TRISHNA: AN INDO-FRENCH SPACE MISSION TO STUDY THE THERMOGRAPHY OF THE EARTH AT FINE SPATIO-TEMPORAL RESOLUTION

J.-L. Roujean ⁽¹⁾, B. Bhattacharya ⁽²⁾, P. Gamet ⁽¹⁾, M.R. Pandya ⁽²⁾, G. Boulet ⁽¹⁾, A. Olioso ⁽³⁾, S.K. Singh⁽²⁾, M. V. Shukla⁽²⁾, M. Mishra⁽²⁾, S. Babu⁽¹⁶⁾, P. V. Raju⁽¹⁵⁾, C.S. Murthy⁽¹⁵⁾, X. Briottet ⁽⁴⁾, A.Rodler ⁽⁵⁾, E. Autret ⁽⁶⁾, I. Dadou ⁽⁷⁾, D. Adlakha⁽²⁾, M. Sarkar⁽²⁾, G. Picard ⁽⁸⁾, A. Kouraev ⁽⁷⁾, C. Ferrari ⁽⁹⁾, B.M. Irvine ⁽¹⁰⁾, E. Delogu ⁽¹¹⁾, T. Vidal ⁽¹²⁾, A. Al Bitar ⁽¹⁾, P. Maisongrande ⁽¹¹⁾, M. Sekhar⁽¹⁴⁾, K. Mallick⁽¹³⁾

... in line with global change

Pressure on water supply for irrigation !

(< 1ary renewable and 2ary freshwater resources)

Agriculture : irrigation, livestock, aquacultureIndustry: drainage, wastewater, cooling, etcMunicipal: public distribution network, etc

Rapid increase of water consumption

Trends in water use by sector (UNEP)

(http://www.unep.org/dewa/vitalwater/article43.html)

Increasing scarcity and deteriorating quality of the water resource

Sro

Proportion of total water withdrawal withdrawn for agriculture

Part of cultivated area under irrigation

20% arable land irrigated \rightarrow 45% food production (FAO)

Computing EvapoTranspiration with remote sensing data

- □ ISRO/CNES cooperation, launch in 2025
- □ Scientific & operational applications
- □ Focus on ecosystem stress and water use
- Global coverage
- □ 4 TIR bands + 5 VNIR bands + 2 SWIR bands
- Revisit : 3 acquisitions at equator per 8 days period
 - 761km-8day orbit reducing hot spot constraints in intertropical zone
- \Box \pm 34° scan angle, 1030 km swath
- □ Nadir spatial resolution (VIS-NIR-SWIR-TIR):
 - 57 m for continental and coastal areas, binned at 1 km over open ocean
- Overpass time : 1 PM and 1 AM (+/- 15 mins)
- NeDT 0.2K
- Indo-French^(*) Joint Science Team, synergies with ECOSTRESS, SBG, LSTM science & application teams
 - (*) with other contributors
- □ Free and open data policy for worldwide scientific community

Learn more about TRISHNA ! <u>https://labo.obs-mip.fr/multitemp/trishna</u> <u>https://trishna.cnes.fr/en</u>

TRISHNA and Ecosystem stress

Gilles Boulet / CESBIO et al.

ISRO-IISC-IIT-Other Academia

• 0

= M.

AI

A

= M

Di

in

dr

Evaporative Stress Index

Area

Irrigated Agriculture

Rain-fed Agriculture

Ecosystems

What is at stake What TRISHNA bring	
otimize irrigation anage consumption of water	ETR
bitrate water savings	
dditional irrigation	STRESS
onitor droughts and their npact on yield	
agnose vulnerable areas (fire, ought, frost, etc)	TEMPERATURE

Multi-layer transfer Models

(MuSICA, SCOPE) Ogée et al., 2003 Van der Tol et al., 2009

atmosphere

Single- and two-source resistance schemes

- (Kustas et al., 2009) Ras : soil-air aerodynamic resistance Rac : vegetation-air aerodynamic resistance Tsol : ground temperature TC : canopy temperature
- Hs : Sensible heat flux from the ground
- Hc : Sensible heat flux from the canopy

Contextual methods

S-SEBI calculates an evaporative fraction at any point C from temperature limits for each albedo class A and B

Water Deficit Index model estimates a stress factor for a given point C according to temp. limits A and B (identified by range of vgt coverage deduced from solar domain data)

• Surface Temperature Initiated Closure (STIC) is an analytical model (Mallick et al, 2014) that introduced LST in Penman - Monteith Formulation to simulate latent heat fluxes (λE)

ŝro

• Belongs to the family of remote sensing-based models of net radiation and heat fluxes. It uses as inputs LST, albedo, NDVI. It is eligible for large-scale application

TIR resolution	% RMSE vs in situ flux measurements	
8 Km (Kalpana-1)	Indian geo	35%
4 Km (INSAT 3D)	satellites	25%
1 Km (MODIS)		20%
65m (ECOSTRESS)		12%

Sensitivity of flux retrievals to direction of view is reduced

Irrigated wheat (Morocco)

800 sparse4 sparse 600 400 Est. with 200 oblique -1:1 0 -1:1 LE Τ_B LE • H • H • G -200 G Rn Rn 600 800 -200 200 400 -200 0 200 400 600 800 Est. with nadir Т_в

Improved LE partitioning

Orchard

SPARSE model

SPARSE4 model

(2 sources, soil and veg)

(<u>4 sources</u>, sunlit/shaded soil/veg.)

· · · CORES · · · ·

Coastal & Inland waters Emmanuelle Autret / LOBS et al.

ISRO-Academia

Area

Inland waters

Sea Ice

What is at stake V	Vhat TRISHNA bri	ngs
 Mixing processes Water Quality, algal bloom, halieutic resource, spring discharge (resurgence), discharge of water, pollutants 	TEMPERATURE REFLECTANCES	
• Ecosystem Productivity (phytoplankton)	INDICES	
Halieutic resource		
 Melting and frost Processes 		

Urban microclimate monitoring Xavier Briottet / ONERA et al.

ISRO-Academia

· · · COES · · ·

>230 - 4250 > 250 - 4253 > 253 - 4256 > 256 - 4259 > 259 - 4462 > 292 - 4265 > 265 - 4269 > 268 - 4271 > 271

· · · COES · · · ·

Solid Earth

ISRO-Academia

Area

- Mineral exploration
- Vocanology
- Soil

What is at stake

- Thermal anomaly detection of coal & peat fire (location & direction), volcanic eruption
- Estimating Lava effusion rate
- Emissivity-based detection of granitoids, RE etc.
- Geothermalenergy
 assessment
- Soil properties retrieval

What TRISHNA brings

- TEMPERATURE (noon-night)
- SPECTRAL EMISSIVITY
- ALBEDO

RL model

Measures

(crédit J.P. Lagouarde & M. Irvine)

<u>3 categories of hot spot model:</u>

□ 3D (urban, vegetation, ex: DART) [Lagouarde et al., RSE 2010 and 2012]

SCOPE 1D (multilayers)
 [Duffour et al., 2015 and 2016a]

Parametric (Roujean-Lagouarde) [Duffour et al., 2016b]

TRISHNA validation sites – Spatial/Temporal Variability (1/2)

Instantaneous satellite images must be compared to in situ small footprint field measurements

TRISHNA validation sites – Spatial/Temporal Variability (2/2)

Initial results indicate that the UAV solution is extremely efficient at reducing in situ measurement variability related to turbulence

Coll. : NASA/JPL, ESA, etc

