

Clemens Schwingshackl (Ludwig-Maximilians-Universität München) Wolfgang Obermeier, Selma Bultan, Giacomo Grassi, Josep G. Canadell, Pierre Friedlingstein, Thomas Gasser, Richard A. Houghton, Werner A. Kurz, Stephen Sitch, Julia Pongratz

Living Planet Symposium 2022

25.5.2022

Background: Gap in land-use related CO₂ fluxes

Global anthropogenic CO₂ fluxes from land use, land use change and forestry (LULUCF) 10 9 8 7 6 **Global models** 5 LULUCF fluxes $(Pg CO_{2}/yr)$ 3 4 Pg CO₂/yr 2 National GHG Inventories 0 -1 (NGHGIs) 1995 2000 2005 2010 1990 Year

Explanation of the gap (Grassi et al., 2018):

- 1. National GHG Inventories (NGHGIs) include natural fluxes on managed land
- 2. Managed land area in NGHGIs is larger than in bookkeeping models

Managed land proxy:

"Anthropogenic" land GHG fluxes are defined as all those occurring on "managed land",

Background: Closing the gap

- 1. NGHGIs include natural fluxes on managed land:
 - Use bookkeeping models to calculate **anthropogenic** CO₂ fluxes
 - Use Dynamic Global Vegetation Models (DGVMs) to calculate **natural** CO₂ fluxes
- 2. Managed land area in NGHGIs is larger than in bookkeeping models:
 - Apply a spatial mask to identify managed lands in DGVMs
 - **Only** include natural CO₂ fluxes on managed land (*more precisely: managed forest*)

Background: Global Carbon Budget 2021

lobal carbon cyc

Earth System Science Data

Article	
Articles / Volume 14, issue 4 / ESSD, 14, 1917–2005, 2022	Search
Earth Syst. Sci. Data, 14, 1917–2005, 2022 https://doi.org/10.5194/essd-14-1917-2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.	
	Article Assets Peer review Metrics Related articles
Data description paper	26 Apr 2022

Global Carbon Budget 2021

Pierre Friedlingstein^{1,2}, Matthew W. Jones³, Michael O'Sullivan¹, Robbie M. Andrew⁴, Dorothee C. E. Bakker⁵, Judith Hauck⁶, Corinne Le Quéré³, Glen P. Peters⁴, Wouter Peters^{7,8}, Julia Pongratz^{9,10}, Stephen Sitch¹¹, Josep G. Canadell⁶¹², Philippe Ciais¹³, Rob B. Jackson¹⁴, Simone R. Alin¹⁵, Peter Anthoni⁶, Nicholas R. Bates¹⁷, Meike Becker⁶^{18,19}, Nicolas Bellouin²⁰, Laurent Bopp⁶², Thi Tuyet Trang Chau⁶¹³, Frédéric Chevallier⁶¹³, Louise P. Chini⁶²¹,

Margot Cronin²², Kim I. Currie²³, Bertrand Decharme²⁴, Laique M. Djeutchouang^{25,26}, Xinyu Dou²⁷, Wiley Evans²⁸, Richard A. Feely¹⁵, Liang Feng²⁹, Thomas Gasser³⁰, Dennis Gilfillan³¹, Thanos Gkritzalis³², Giacomo Grassi³³, Luke Gregor³⁴, Nicolas Gruber³⁴, Özgür Gürses⁶, Ian Harris³⁵, Richard A. Houghton³⁶, George C. Hurtt³², Yosuke Iida³⁷, Tatiana Ilyina⁵⁰, Ingrid T. Luijkx⁶⁷, Atul Jain³⁸, Steve D. Jones^{18,19}, Etsushi Kato³⁹, Daniel Kennedy⁴⁰, Kees Klein Goldewijk⁶⁴¹, Jürgen Knauer^{51,242}, Jan Ivar Korsbakken⁶⁴, Arne Körtzinger⁶⁴³, Peter Landschützer⁵⁰, Joe R. Melton⁵⁵¹, David R. Munro^{52,53}, Julia E. M. S. Nabel^{51,54}, Shin-Ichiro Nakaoka⁵⁵⁵, Yosuke Niwa^{55,56}, Tsuneo Ono⁵⁷, Denis Pierrot⁵⁸, Benjamin Poulter⁵⁹, Gregor Rehder⁶⁰, Laure Resplandy⁶¹, Eddy Robertson⁶², Christian Rödenbeck⁶⁵⁴, Thais M. Rosan⁶¹¹, Jörg Schwinger^{644,19}, Clemens Schwingshackl⁶⁹, Roland Séférian⁶²⁴, Adrienne J. Sutton⁶¹⁵, Golm Sweeney⁶⁵³, Toste Tanhua⁶⁴³, Pieter P. Tans⁵³, Hanqin Tian⁶⁴⁴, Bronte Tilbrook^{65,66}, Francesco Tubiello⁶⁷, Guido R. van der Werf⁶⁸, Nicolas Vuichard¹³, Chisato Wada⁵⁵, Rik Wanninkhof⁵⁸, Andrew J. Watson⁶¹¹, David Willis³, Andrew J. Wiltshire⁶², Wenping Yuan⁶⁹, Chao Yue⁶¹³, Xu Yue⁶⁷⁰, Sönke Zaehle⁵⁴, and Jiye Zeng⁵⁵

GCB 2021 includes for the first time a comparison of model estimates with National GHG Inventories (NGHGIs) at global scale

... but what about comparisons at smaller scales?

Methodology

Apply method for closing the gap at country-level \int

Analyze to which extent different countries include the natural sink in their NGHGI estimates

Results: Anthropogenic and natural CO₂ fluxes

Anthropogenic LULUCF flux

Natural land flux

Results: Combining the different fluxes

Gap in USA considerably reduced when considering natural CO₂ flux in managed forest

anthropogenic LULUCF flux natural land flux (in managed forests) LULUCF flux from NGHGI

2001-2015

Results: Eight exemplary regions/countries

Results: Potential explanations for remaining gaps

- **China**: Incomplete representation of afforestation in bookkeeping models
- Brazil: Mismatch in gross deforestation areas; natural disturbance not sufficiently considered in models
- Indonesia: Anthropogenic degradation underestimated in National GHG Inventory
- **DR Congo**: Estimates from different national reports uncertain and incomplete

anthropogenic LULUCF flux
natural land flux (in managed forests)
LULUCF flux from NGHGIs

gap before including natural land fluxgap after including natural land flux

Implications and potentials

1. Climate mitigation:

- Need for consistent estimations of anthropogenic land-use CO₂ fluxes
- Mitigation activities only sustainable if creating CO₂ sinks <u>additional</u> to natural fluxes
- 2. Remote-sensing products:
 - Deliver independent and spatially explicit estimates of land use and land cover change, changes in biomass, managed forest areas
 - Near real-time availability might provide a temporal extension of country reports, which are usually published with a lag of several years

Conclusions and outlook

Schwingshackl et al.: Separating natural and land-use CO₂ fluxes at country-level to reconcile land-based mitigation estimates (*in review*)

- 1. Separating natural and land-use CO₂ fluxes **at country-level is possible** by means of models (bookkeeping + DGVMs)
- 2. Including natural CO₂ fluxes in managed forests **considerably reduces gap** in most investigated countries (by up to 70%)
- 3. Potential **improvements**:

NGHGIs: More complete data on deforestation and anthropogenic degradation Models: Better representation of afforestation and natural disturbance