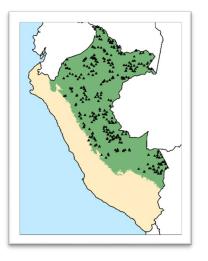
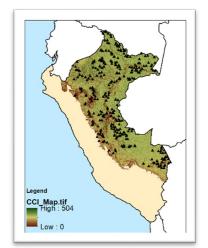

Integrating space-based biomass and NFI data to enhance (sub)national forest-related biomass estimates

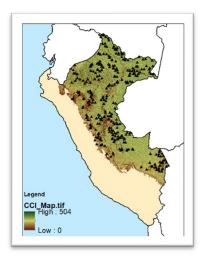
Natalia Málaga, Sytze de Bruin, Ronald E. McRoberts, Martin Herold, et al.

A country case study in the tropics


- Evolving technologies and IPCC guidelines for the use of biomass maps in national GHG accounting
- Tropical countries struggling to complete or update NFIs
- A framework for enhancing the precision of (sub)national AGB estimates using a global biomass maps as auxiliary data, while taking into consideration the country's NFI sampling design
- Account for different sources of uncertainties from the integration of remote sensing-based products with ground-based data


Peruvian Amazonia: We assessed the gain of *precision* in AGB estimates from the use of the global biomass maps through 4 different scenarios

Scenario A

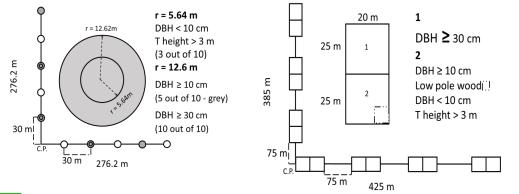

Baseline scenario

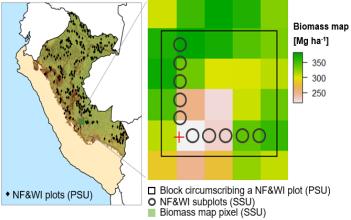
Scenario B Using the uncalibrated biomass map

Scenario C Using the locally calibrated biomass map

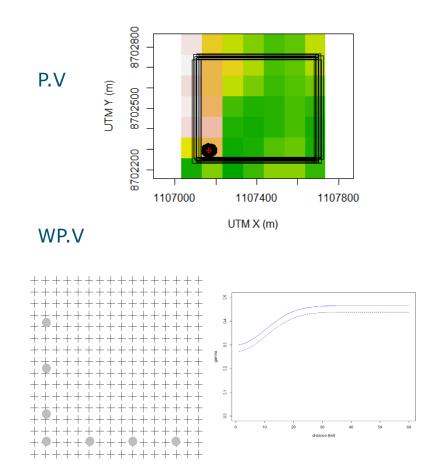
Scenario D

[Accounting for uncertainties]

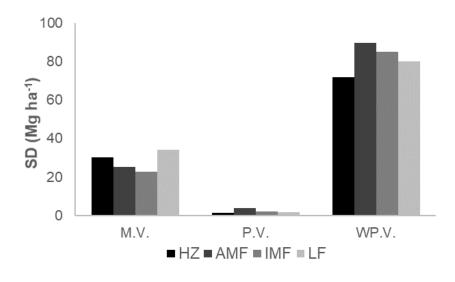

Map-to-plot intercomparison

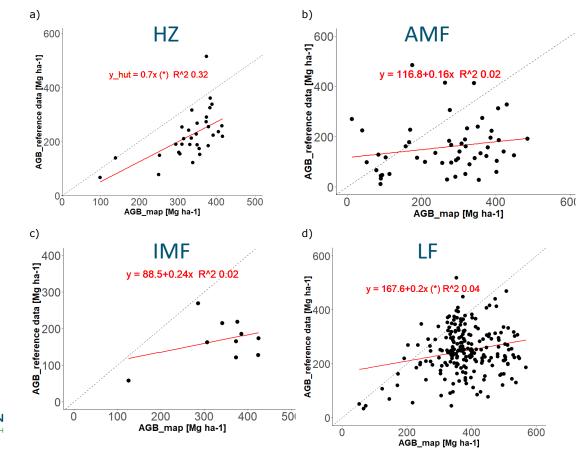

NFI: 2013-to date

NAGENINGEN


YA

- 2017 ESA-CCI biomass map (v.3)
- Defined the inferential approach that best accommodated Peru's NFI sampling design




Accounting for uncertainties using hybrid inference

Stratum-wise mean standard deviations (SD) owning to the measurement variability (MV), positional variability (PV), and within polygon variability (WP.V).

2017 CCI biomass map local calibration – Scenario C

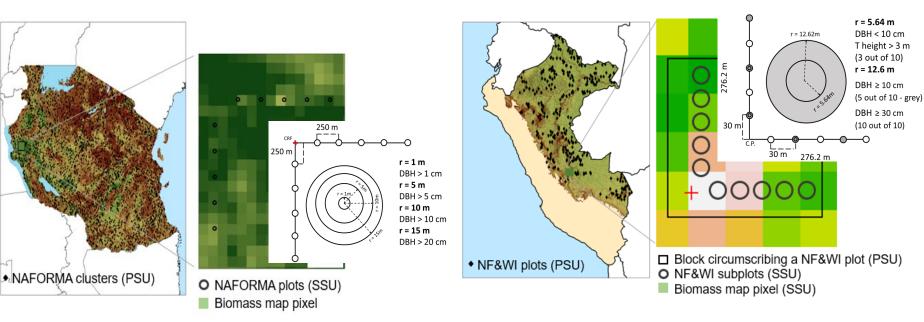
(Sub)national model-assisted AGB estimates for the Peruvian Amazonia

	Baseline scenario (NFI)		Uncalibrated map		Calibrated map		Including uncertainty propagatio	
Strata	$ \hat{\mu}_h$	SE	$\hat{\mu}_{h}$	SE	$\widehat{\mu}_h$	SE	$\hat{\mu}_h$	SE
HZ	212.4	13.7	208.5	13	213.5	12.6	213.3	14.9
AMF	148.7	17	142.4	19.9	156.3	14	161	14.1
IMF	147.9	27.7	175.1	27.5	170.7	17.4	178.5	20.1
LF	253	9.3	264	8.9	257.9	7.1	257.9	7.4
Amazon	208.7	7.9	217.7	7.9	217	5.7	219.3	6.2

 \widehat{u}_h :mean AGB per unit area (Mg ha-1) SE: standard error

Key-messages

- Even with small map-to-plot correlations, the precision for (sub)national AGB model-assisted estimates improved by 150% at the stratum level and 90% for the entire Peruvian Amazonia
- Refined country AGB estimates for GHG AFOLU reporting
- Our method accounts for sources of uncertainties in both NFI plots and satellite-based biomass estimation for better error assessment of the integration (scenario D) – IPCC good practice



Country comparative study in the tropics

Defining the statistical inferential approach based on the country NFI sampling strategy

Tanzania

VAGENINGEN

Peruvian Amazonia

Thank very much for you attention! <u>natalia.malagaduran@wur.nl</u>

