

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

Mapping Aboveground Biomass and Carbon in Salt Marshes across the Contiguous United States

Anthony D. Campbell^{1,2}, Temilola Fatoyinbo¹

¹NASA GSFC ²GESTAR II University of Maryland Baltimore County

25.5.2022

ESA UNCLASSIFIED – For ESA Official Use Only

Salt marsh

Environment commonalities Tidally inundated Low energy Salinity Variation Tidal characteristics Climate Soil Hydrology Sediment Fauna Regional sea level

Salt marsh significance

Salt marsh

- Carbon sequestration
- Nursery habitat
- Water quality (denitrification and filtering of pollutants)
- Wave attenuation
- Approximately \$10,000 per hectare
 - Tidal mudflats \$1,942 per hectare (Barbier *et al.* 2011)

💻 🔜 📲 🚍 💳 🛶 📲 🔚 🔚 🔚 📲 🔚 📲 🚍 🛶 🚳 🛌 📲 🚼 💶 📾 🏣 🍁 🔹 🖬 🔶 The European space agenc

Salt marsh carbon

- In the CONUS, 75% of blue carbon is found within estuarine emergent wetlands (Hinson et al. 2017).
- Carbon burial
 - Estimated
 - 4.8±0.5 87.2±9.6 Tg C yr⁻¹
 (Mcleod et al. 2011)

Status and change – coastal wetlands

 Historic Wetland losses since 1700 AD are estimated to be as high as 87% (Davidson 2014)

Science questions

What is the distribution of salt marsh aboveground biomass across the CONUS? What drives this variation (climate, geomorphology, direct anthropogenic change, sea level rise)?

Data outputs

Update salt marsh extent to 2020 and 10 m spatial resolution CONUS wide map of aboveground biomass

💳 🔜 📲 🚍 💳 📥 📲 🔚 🔚 🔚 📰 👬 🔚 🔤 🛻 🚳 🍉 📲 👬 🚍 🛨 📰 📾 🕍 🔸 🗰 🗰

AGB prediction

- 3 machine learning algorithms (xgboost, random forest, SVM), 2 Scales 10 and 30 m, and stable vs complete training dataset
- Hypertuned
- Evaluated with test data from two sites, one completely unused in training

Extent prediction:

- Three machine learning algorithms estimate spatially a low, medium and high extent
- Confidence interval and accuracy following methods of Olofosson et al. (2014)

→ THE EUROPEAN SPACE AGENCY

Time series stability – AGB results

Plum Island, MA

221.5

232.3

Validation

Type 1

(n=17)

RMSE

373.04

344.5

- All training data from Byrd et al. 2018 were evaluated for time series stability.
- Two metrics of stability trend following biomass samples and breaks for additive season and trend (BFAST)
- Absolute trends of 0.05 were then analyzed with ٠ BFAST finding all these experienced a break following data collection.
- Two AGB models were trained and compared using

Site

n

Validatio

(n =8)

RMSE

107.33

194.2

Georgia

Validatio

(n =158)

RMSE

301.0

326.1

n

n

723

984

Training

set

Stable

e

Complet

Overall accuracy: 96.3% CONUS extent: 14,491 ± 1,736.75 km²

Uncertainty from accuracy assessment: 3175.6 km²

Uncertainty from machine learning: 3473.5 km²

CONUS Aboveground biomass

*

10

Aboveground biomass (2015-2020)

Total AGB 8.32 (7.15-9.35) Tg Average Carbon 255.7 g C m²

🛛 📕 🚛 💳 🖛 🕂 🖉 🔚 📰 🔜 📲 🔚 🚛 👘 💶 👘 🔤 🖬 🖬 🗮 🛶 🚳 🌬 👫 📲 🛨 📰 📾 🕍 🔸 THE EUROPEAN SPACE AGENCY

Analysis of AGB drivers

- Average AGB in 3 x 3 km
- Machine learning model (xgboost)
- Shapley calculated and analyzed to determine drivers of AGB across the CONUS.

Data Type	Variable	Resolution	Sensor	Source
Climate	August Temp/Precipitation	250 m	NA	PRISM Climate Data
Tidal/Elevation	Relative tidal elevation, tidal amplitude, RSLR	30 m	Various LiDAR	Holmquist and Windham-Myers 2021
Water	Seasonal, Water, New Seasonal	30 m	Landsat	Pekel et al. 2016
Land cover	NLCD classes	30 m	Landsat	Wickham et al. 2021
Ocean Color	Diffuse Attenuation Coefficient, Chlorophyll	750 m	VIIRS	NOAA CoastWatch/Ocea nWatch

Major Drivers Aboveground biomass

💳 🔜 📲 🚍 💳 🛶 📲 🔚 📲 🔚 📲 🚍 📲 🔤 📾 🚳 🍉 📲 🚼 📰 📾 🔤 🖕 🔹 🖬 🖉

East coast drivers of aboveground biomass

Takeaways:

- In salt marsh AGB was 8.32 (7.15-9.35) Tg in 2020
- The 10 m spatial resolution allows for finer scale determination of these loss areas and repeat monitoring
- Machine learning uncertainty can be derived spatially informing management and carbon monitoring
- RSLR between 3-5 mm yr⁻¹ increase AGB but rates >5 mm yr⁻¹ reduced AGB
- AGB response to climate and RSLR suggest that these ecosystems response to climate change will be complex

References

- Barbier, E.B., Hacker, S.D., Kennedy, C., Koch, E.W., Stier, A.C. & Silliman, B.R. 2011, "The value of estuarine and coastal ecosystem services", Ecological Monographs, vol. 81, no. 2, pp. 169-193.
- Bromberg, K.D. & Bertness, M.D. 2005, "Reconstructing New England salt marsh losses using historical maps", *Estuaries*, vol. 28, no. 6, pp. 823-832.
- Byrnes, J. 2020. PIE LTER plant biomass associated with marsh sites used in space for time sea level rise study, Rowley, MA. ver 2. Environmental Data Initiative. https://doi.org/10.6073/pasta/895e4278b794533c94d3b3eee2211c93 (Accessed 2021-11-29).
- Campbell et al., "A review of Carbon Monitoring in Wet Carbon Systems using Remote Sensing", Environmental Research Letters. In Review.
- Daly, C. and Bryant, K., 2013. The PRISM climate and weather system—an introduction. Corvallis, OR: PRISM climate group.
- Davidson, N.C. 2014, "How much wetland has the world lost? Long-term and recent trends in global wetland area", Marine and Freshwater Research, vol. 65, no. 10, pp. 934-941.
- Hinson, A.L., Feagin, R.A., Eriksson, M., Najjar, R.G., Herrmann, M., Bianchi, T.S., et al. (2017). The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States. *GLOBAL CHANGE BIOLOGY*, 23, 5468-5480
- Holmquist, J.R., and L. Windham-Myers. 2021. Relative Tidal Marsh Elevation Maps with Uncertainty for Conterminous USA, 2010. ORNL DAAC, Oak Ridge, Tennessee, USA. <u>https://doi.org/10.3334/ORNLDAAC/1844</u>
- Hoegh-Guldberg, O., Northrop, E. & Lubchenco, J. The ocean is key to achieving climate and societal goals. Science 365, 1372-1374 (2019).
- Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E. and Wulder, M.A., 2014. Good practices for estimating area and assessing accuracy of land change. *Remote Sensing of Environment*, 148, pp.42-57.
- Mcleod, E., Chmura, G.L., Bouillon, S., Salm, R., Björk, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H. & Silliman, B.R. 2011, "A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2", Frontiers in Ecology and the Environment, vol. 9, no. 10, pp. 552-560.
- Mcowen, C.J., Weatherdon, L.V., Van Bochove, J., Sullivan, E., Blyth, S., Zockler, C., Stanwell-Smith, D., Kingston, N., Martin, C.S. & Spalding, M. 2017, "A global map of saltmarshes", Biodiversity data journal, , no. 5.
- Pekel, J.F., Cottam, A., Gorelick, N. and Belward, A.S., 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), pp.418-422.
- Wickham, J., Stehman, S.V., Sorenson, D.G., Gass, L. and Dewitz, J.A., 2021. Thematic accuracy assessment of the NLCD 2016 land cover for the conterminous United States. Remote Sensing of Environment, 257, p.112357.