

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

EUMETSAT CECMWF

Multi-scale monitoring of actual evapotranspiration: Use of Copernicus for consistent estimation of agricultural water use from field to continental levels

Radoslaw Guzinski, Hector Nieto, Ruben Ramo

25/05/2022

ESA UNCLASSIFIED – For ESA Official Use Only

STUDY OUTLINE

Water use in agriculture

- SDG 6.4.1 Water use efficiency
- Evapotranspiration (ET) is a direct proxy of crop water use

FAO WaPOR portal - wapor.apps.fao.org

- Dekadal (10-days) evapotranspiration products
- Three spatial scales
 - Continental 250 m
 - National 100 m
 - Local 30 m

Can similar products be achieved with Copernicus data?

FAO Aquastat

Spatial Scale	Spatial resolution and sensors used currently in WaPOR	Spatial resolution and sensors when using Copernicus data
Continental	250 m – MODIS on Terra and Aqua	300 m – SLSTR and OLCI on Sentinel-3A/B
National	100 m – MODIS on Terra and Aqua and Vegetation on PROBA-V	100 m – SLSTR on Sentinel-3 A/B and MS on Sentinel-2 A/B
Local	30 m – OLI on Landsat 8 and ETM+ on Landsat 7 and TM on Landsat 5	20 m – SLSTR on Sentinel-3 A/B and MSI on Sentinel-2 A/B

COPERNICUS SENTINEL DATA

Sentinel constellation highly suitable for parcel-scale agricultural monitoring

Satellite	Sentinel-2	Sentinel-3	Constellation
Spatial resolution	10 m - 60 m	300 m – 1 km	10 m
Temporal resolution	1 – 5 days	Daily	Daily
Spectral coverage	VIS, NIR, SWIR	VIS, NIR, SWIR, TIR	VIS, NIR, SWIR, TIR

	the second se					
Sentinel-1	A	₩B		-C	T D	
Sentinel-2	A	Sur	В		Se C	Sa D
Sentinel-3		A	ъB		1C	D

	Sentinel-1	Sentinel-2	Senti	inel-3
Sensor	C-band SAR	MSI	OLCI	SLSTR
Temporal (days)	6 -12	5		1
Spatial (m)	5 - 100	10, 20, 60	300	500, 1000
Radiometric (bands)	Duel (HH+HV or VV+VH)	13 (443 - 2190 nm)	21 (400 - 1020 nm)	11 (555 - 10850 nm)

OTHER COPERNICUS DATA

Meteorological data

- Available from Copernicus Climate Data Store
- ERA5 climate model
 - Land-surface meteorological parameters
 - 30 km spatial resolution
 - Hourly temporal resolution
 - 5-day timeliness (ERA5P)
 - Global coverage

Landcover data

- Produced by Copernicus Land Monitoring Service
- 100 m spatial resolution
- Yearly temporal resolution
- Overall mapping accuracy 80 %

EXPERIMENT DESIGN

Aims:

- Demonstrate feasibility of using Copernicus data for operational (historical and NRT), detailed, large scale ET mapping which is consistent across spatial scales
- Compare WaPOR and WaPOR-like ET products to Copernicus-based equivalents through validation and assessment of ET maps
- Demonstrate practical usage of method developed in Sen-ET project (<u>esa-sen4et.org</u>)

BIOPHYSICAL PROCESSING — SENTINEL-2

Download

Sen2Cor & Fmask

SNAP & Python

SNAP / Python

BIOPHYSICAL PROCESSING - SENTINEL-3 SYN

- 10-day minimum view zenith angle composite of SYN reflectance
- Train model between S2 biophysical property and SYN composite reflectance
- Apply model to SYN composite
- Training area can be smaller than application area

S2+S3 300m

CHALLENGE

Lack of high-resolution thermal data

DATA FUSION - THERMAL SHARPENING

Bagging ensembles of modified decision trees Works on pairs on optical and thermal images

- Up to 10-days offset
- Unique model trained and applied for each pair

Conservation of thermal energy

Assumptions:

- Relation exists between optical and thermal images
- This relation is scale-independent

Limitations:

- LST range
- Temporal offset between thermal and optical

ET MODELLING - TSEB

Two Source Energy Balance

- Physical model
- Models instantaneous land-surface energy fluxes (W/m2)
- Partitions Evaporation and Transpiration with resistances in series
- Flux interaction between canopy and soil
- Robust in many environments
- Continually developed

Extrapolation to daily ET (mm/day)

Source: Mecikalski et al., 1999

ET MODELLING - ETLOOK

ETLook

- Physical/contextual model
- Models daily land-surface energy fluxes (W/m2)
- Partitions Evaporation and Transpiration by radiation partitioning
- No flux interaction between canopy and soil
- Requires definition/calculation of extreme temperatures
- Less sensitive to input uncertainty

ETLook code was developed by WaPOR FRAME consortium

VALIDATION SITES

Site	Irrigation	Measurement	Notes	Location
Potato	Sprinkler	Lysimeter	Small parcel	SE Spain
Festuca / reference grass	Sprinkler	Lysimeter	Small parcel Frequently irrigated Clipped to 12 cm	SE Spain
Vineyard	Drip	Lysimeter		SE Spain
Almond	Drip	EC tower	Residual assigned to latent heat	SE Spain
Wheat	None	EC tower	No residual correction	SE Spain
Olive	None	EC tower	Low tree coverage	Central Tunisia

VALIDATION — ALL SITES

ANNUAL MAPS — LEBANON

SCALE COMPARISON - TUNISIA

SCALE COMPARISON - LEBANON

Actual Evapotranspiration Transect accross Bekaa valley for 2019.07.01 - 2019.07.11

IMPROVEMENTS IN TIR SHARPENING

Issue: capture extreme (dry/wet) cases

Solution: include Landsat LST data

- Force Landast in TSEB when available
- Include Landsat LST during sharpening

VALIDATION IN DIFFERENT CLIMATES

Current validation sites

- Tunisia 2019
- Spain 2018 & 2019
- Lebanon (2019)

New validation sites

- 6 new sites
- Decided in consultation with FAO
- Focus on (irrigated) agricultural areas where:
 - Measurements are aviable e.g. Lebanon (Tal Amara), Tunisia (Jendouba)
 - WaPOR L3 data is avaiable e.g. Mozambique, Rwanda, Sudan, Ethiopia, Mali

DATA FUSION BETWEEN S2 AND S3 OPTICAL DATA

GAP-FILLING OF ET

Current approach:

Using reference ET

Other approaches might perform better with longer gap

Article

Evaluation of Multiple Methods for the Production of Continuous Evapotranspiration Estimates from TIR Remote Sensing

Emilie Delogu¹, Albert Olioso², Aubin Alliès³, Jérôme Demarty³, and Gilles Boulet^{4,*}

Thank you

Guzinski, Radoslaw, Hector Nieto, Juan Manuel Sánchez, Ramón López-Urrea, Dalenda Mahjoub Boujnah, and Gilles Boulet. 2021. "Utility of Copernicus-Based Inputs for Actual Evapotranspiration Modeling in Support of Sustainable Water Use in Agriculture." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14: 11466-84.

https://doi.org/10.1109/JSTARS.2021.3122573.

21