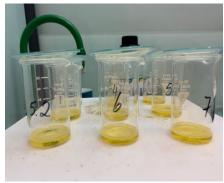

HIDDEN HUNGER

More than two billion people are at risk of micronutrient (e.g. calcium, zinc, iron) deficiency= hidden hunger

growth impairment, immune dysfunction, cognitive impairment

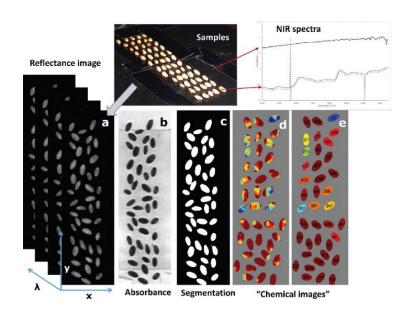
Hidden hunger is widespread especially in low-income countries where diets are high in cereals and low in animal source products

Source: Kumssa et al. (2015)

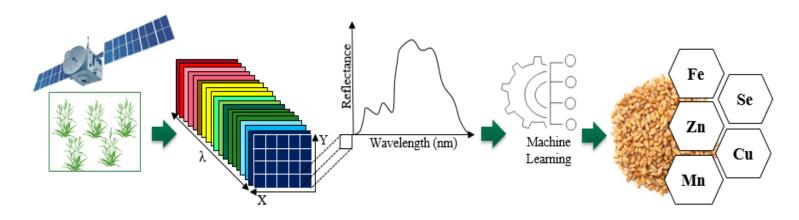


ASSESSING CROP NUTRITIONAL STATUS

Wet chemical analysis of crop grains



 Near-Infrared spectroscopy and hyperspectral imaging of crop grains


Source: Caparoso et al, 2018

Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES)

OVERALL GOAL

 Evaluate the potential of Sentinel-2 and PRISMA images to estimate and predict the abundance of nutrients in crop grains

- Macro-nutrients: Potassium (K), Phosphorus (P), Nitrogen (N),
 Sulfur (S), Calcium (Ca)
- Micro-nutrients: Iron (Fe), Magnesium (Mg), Zinc (Zn)
- Crops: Wheat, Rice, Corn, Soybean

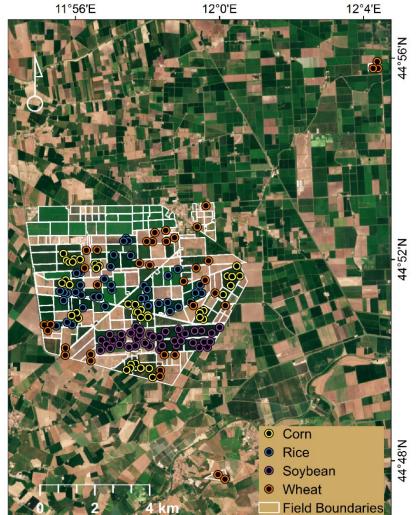
SPECIFIC OBJECTIVES

Objective 1:

 evaluate to what extent the foliar chemical properties and temporal dynamics as detected by Sentinel-2 and PRISMA of the investigated crops translate to nutrient concentrations in the final agricultural production

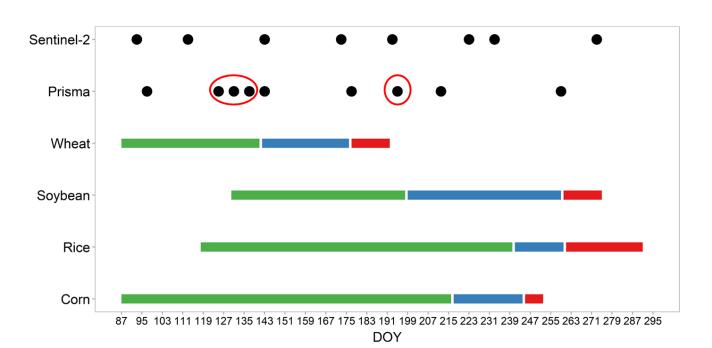
Objective 2:

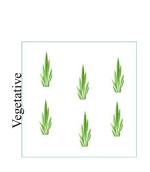
 determine how robust Sentinel-2 and PRISMA are in predicting nutrient concentrations of the investigated crops in time (vegetative, reproductive and maturity).

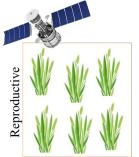


STUDY AREA AND DATA

- Jolanda di Savoia, Italy
- Four crops
 - Nine rice varieties
 - Six wheat varieties
 - Five maize varieties
 - One soybean variety

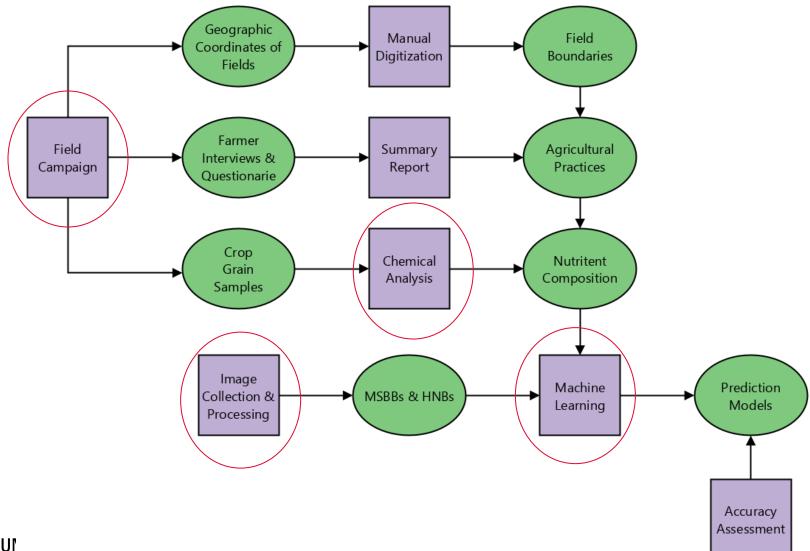


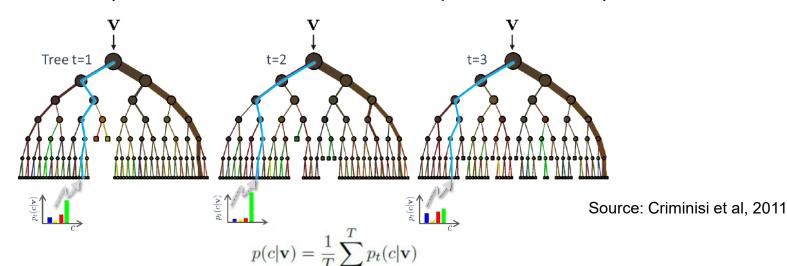




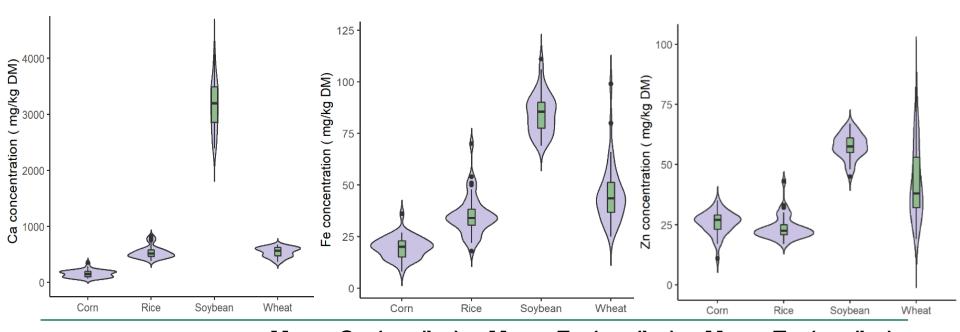
PRISMA & SENTINEL-2 IMAGES

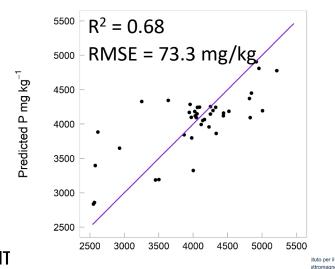
- Vegetative
- Reproductive
- Maturity

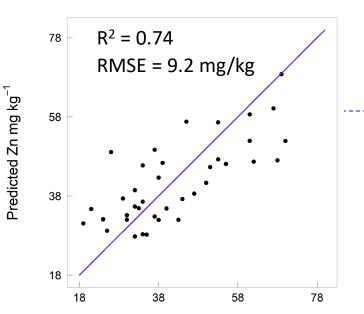



HYNUTRI WORKFLOW

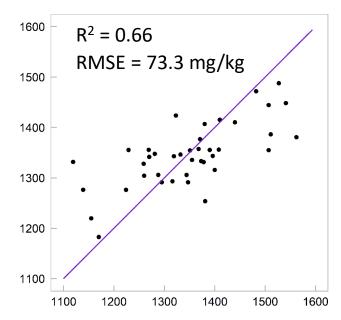
MACHINE LEARNING METHODS


- Random Forests (Breiman, 2001)
- Feature selection: backward feature elimination (caret package in R)
 - ntree: 1000
 - mtry: square root of the total number of input variables
 - 100 iterations (ensure robustness of the reported results)

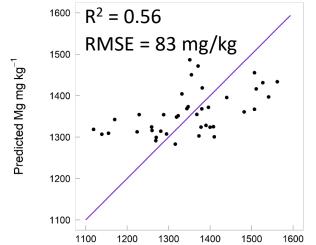

		Mean Ca (mg/kg)	Mean Fe (mg/kg)	Mean Zn (mg/kg)
	Wheat Italy	541.8	45.4	41.6
	Wheat Ethiopia	428.8	45.1	25.9
	Corn Italy	153.3	19.7	25.8
	Corn Ethiopia	59.1	31.3	21.7
	Corn Malawi	59.1	31.3	21.7
	Rice Italy	535.8	35.2	23.6
	Rice Malawi	94.6	67.5	24.2

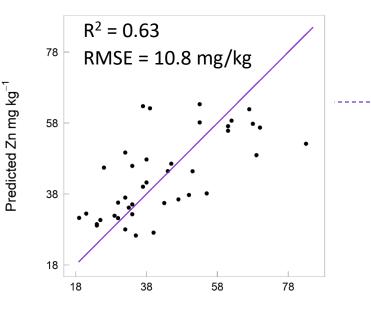


PRISMA- BASED PREDICTIONS

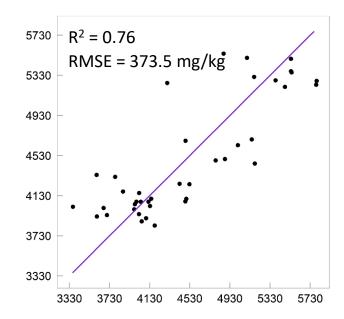

-	Nutrients	R ²	RMSE mg/kg
	Zn	0.74	9.20
—	Р	0.68	411.40
WHEAT	Mg	0.66	73.31
\nearrow	S	0.64	151.66
	K	0.63	471.69
	Ca	0.61	62.64
	Fe	0.57	10.63
	N	0.49	0.25

Observed P mg kg⁻¹


Observed Zn mg kg⁻¹



Predicted Mg mg kg⁻¹


SENTINEL-2 BASED PREDICTIONS

_			
	Nutrients	R ²	RMSE mg/kg
	Zn	0.63	10.86
	Р	0.6	500.7
ΔT	Mg	0.56	83
WHEAT	S	0.54	182.5
>	K	0.76	373.5
	Ca	0.54	64.99
	Fe	0.48	12.17
	N	0.4	0.29

Observed Zn mg kg⁻¹

UNIVERSITY

Observed Mg mg kg⁻¹

uto per il rilevamento tromagnetico l'ambiente Predicted K mg kg⁻¹

Observed K mg kg⁻¹

RESULTS

- Promising results with PRISMA and Sentinel-2
- PRISMA SWIR bands proved to be more sensitive to predicting target nutrients
- Sentinel-2 red-edge and NIR narrowbands were more important than SWIR bands
- The correlations between spectra and nutrients were strongest at the early stages of crop

LIMITATIONS

- PRISMA and Sentinel-2 cloud-free images did not cover each important growth stage of the target crops
 - Difficult to draw consistent conclusions
 - Surveillance:
 - Sample size
 - Need to collect data across several seasons

IMPACT

- Proposed method has the potential to:
 - side-step the scale limitations of traditional laboratory analysis of harvest samples
 - improve the spatiotemporal coverage of crop nutrient data to an unprecedented degree
 - Early interventions

Agricultural and food system

HYNUTRI PROJECT

More information: www.hynutri.nl

Acknowledgements:

- European Space Agency (ESA) EO Science for Society grant (EOEO-5 Block 4, 4000130277/20/I-DT)
- Dr. Donato Cillis and Gabriele Dottori of IBF-Servizi for collecting and processing the sample grains

16