

· e esa

biomass

TAKING THE PULSE OF OUR PLANET FROM SPACE

BIOMASS Ground Segment architecture, multi-Mission Algorithm And Analysis Platform (MAAP) and related Open-Source developments (BioPAL)

Clément Albinet¹, Nuno Miranda¹, Stefanie Lumnitz¹, Bjorn Frommknecht¹, Klaus Scipal¹, Gabriella Costa¹, Henri Laur¹, Michele Caccia², Valentina Faccin³.

1 ESA - European Space Research Institute, Italy 2 RHEA, Italy 3 Serco. Italv IED – For ESA Official Use Only

Wednesday 25th May 2022

→ THE EUROPEAN SPACE AGENCY

Overview

The BIOMASS Ground Segment Architecture

BioPAL: The Open-Source BIOMASS Processor The concept of Mission Algorithm and Analysis Platform (MAAP)

💻 📰 📕 🚛 💶 🛶 🛯 🖉 🔚 🔄 📰 📲 🔚 📲 🔚 🚛 🚳 🛌 📲 🚼 🖬 🖬 📲 🖛 🖉

The BIOMASS Ground Segment

→ THE EUROPEAN SPACE AGENCY

The *BIOMASS* Ground Segment is composed by several entities:

- Flight Operations Segment (FOS)
- Calibration Transponder

Biomass calibration concept towards mission operations Philip Willemsen | European Space Agency (ESA) | Germany

- Payload Data Ground Segment (PDGS)
 - Science Data Acquisition
 - Mission Planning
 - Data Handling (i.e. Processing)
 - Data Access
 - Archiving
 - Performance Monitoring

The BIOMASS PDGS

biomass

PDGS: Acquisition & Planning

esa

BIOMASS First Global coverage (INT)

- BIOMASS observation scenario is implemented by the Mission Planning System for Primary objectives (Forests) and secondary objectives
- Observation mask is limited by primary P-band users (ITU regulation)
- Average Sensing 20min (40 min peak) of data per orbit is acquired and downlinked through two X-band stations allowing 10 min visibility at each pass.

BIOMASS X-band stations network (Kiruna + Inuvik)

10 11 12 13 14 Pass start hour (UTC)

📕 📰 💳 🕂 📲 🔚 📰 🃰 🔚 📕 📰 🚟 🔚 🔤 🔤 🚳 🖢

→ THE EUROPEAN SPACE AGENCY

BIOMASS Mission Data Volume

	REPEAT_CYCLE	MAJOR_CYCLE	MONTHLY	GLOBAL_COVERAGE	INT_PHASE (6 GC) [0% OVH]
CADU_VOLUME	0.70	7.47	6.54	52.28	313.68
RAW_VOLUME	0.61	6.52	5.70	45.63	273.77
PLATANC_VOLUME	0.00	0.00	0.00	0.00	0.01
SARANC_VOLUME	0.00	0.00	0.00	0.00	0.01
L0_VOLUME	0.70	7.48	6.55	52.38	314.28
L0M_VOLUME	0.00	0.03	0.02	0.20	1.19
ORBIT_VOLUME	0.00	0.00	0.00	0.00	0.01
ATTITUDE_VOLUME	0.00	0.00	0.00	0.00	0.01
L1A_VOLUME	1.20	12.86	11.25	90.02	540.10
L1C_VOLUME	0.90	9.64	8.44	67.51	405.08
L1B_VOLUME	0.25	2.63	2.30	18.43	110.56
TOTAL	4.35	46.64	40.81	326.45	1958.71

→ THE EUROPEAN SPACE AGENCY

Overall the mission will generate 3-4PB over the 5 years

BIOMASS is a quarter of Sentinel-1 unit

BIOMASS Mission Volume

BIOMASS Product layout

SW3

<u>7</u>2

SW

Porto Velh

"Low-Level" products in instrument geometry: L1A/B/C & L2A products will be provided as standard frames of ~20s each:

L1C are <u>coregistered</u> frames on a single reference image

L2A are intermediary step to the final products

<u>"Higher Level " products in "map" geometry</u>
Higher level products (L2B, L3) are combining L2A frames on a pre-defined tile grid (1°x1°)

BIOMASS Product documentation

Preduct ID		10,000	
Product Type	Strong, Stat	Range, Single I	Jook, Comp
Main Product Ch	rocheriedus		
Plant Value	Complete	Amplitude prop-	attoriat to
Coordinate System		Start Pange	
Bits Per Post	64 (32	Anothele + 327	1440
Putarization Options	P.J	PROFESSION OF	¥0
Beat ID	81	80	80
Ground Range Coverage (km)	28 km - 8	D km (willuster de	(mendenit)
Equator	64.00	88.60	61.73
Bouth Pole	26.04	106,02	413,488
Start Range Resolution (m)	33.80	23,46	23,46
Azimuth Resolution (m)	7,60	7,62	7,66
Start Range Pixel Specing (m)		18.01	
Astmuth Plant Specing (m) Average		4.57	
Min	4.64	4.45	4.58
Man	4.00	4.40	4.82
Incidence Angle 18 mid-swatts (deg) Equator	34.09	28.43	33.00
Bituth Pale	33.10	24.08	28.23
Equivalent Number of Looks (ENL)			
Radiometric Resolution (48)		8	
Product Parlamente Para	maters (see the	4.6.0	
Range PSUR (189)		-16-12	
Automath PBLR (x80)		-10-1 2	
20 (BLA (HE)		4+15	
Total Amonguity Ratio (200)		+18	
HERE 1999		+28	
Channel Completention Accuracy (plants)	Ineffe	Pen V100 dia	pinel
Radiometric Bias (#8) (1 sigma)		6.3	
Reducettic Stability (HI) (7 signal)		6.6	
Absolute Location Accuracy (m)		25-D heights	
Cross-talk accuracy (48)		190	
Channel Industance accuracy (MR)		190	
BAR Presenting	Parameters		_
Number of Looks (range a salessifi)		1.1	
Look Overlag (range a admuth)		N/R	
Ramps Look Bandwidth (Mild)		4.0	
Astmuth Look Bundwidth (Htt)		848.0	
Range Hamming Weighting Coefficient	6.91	0.86	0.86
Astmuth Hanening Weighting Coefficient	6.77	0.79	0.86
Data Bian & Valume for a Nominal Fo	ane (27-second	Longi & Taur	-
Approx. # of Lines	30907	300460	3133
Approx. # of Picels per Line	1062	10278	1052
Max Outs Volume (Single Pularization) (980)	010	100	100
Max Oata Volume (Full Potentiation) (MB)	1079	1558	1940
Average Data Rate (WBrd	41	IN .	79
	te (21 second	Longi @ Bouth	Pale
Data Blas & Volume for a Rominal Fran		101-107	3104
Data Blaz & Volume for a Nominal Fran Asserse. E of Lines	10 Million House		
Outs Base & Volume for a Nominal Fran Approx. If of Lines Asserse. If of Plaste per Line	30868	11007	
Data Ban B. Valuma for a Nominal Fran Approx. If of Lines Approx. If of Vision per Line Max that Valuma (Single Polarization) (2001)	529 125	1100	1010
Data lizes & Valuess for a Normal For Approx. If of Lines Approx. If of Plants per Line Max Data Volume (Single Polarization) (MR) Max Data Volume (Trid Polarization) (MR)	529 125	1192 ¹ 255	361

L1/2/3 Product Performance Definition

📕 🚛 💶 🛶 📲 🔚 📰 📰 📲 🔚 🚛 🚳 🔤 📲 🗮 🔤 🚱

How to make the future of EO users better?

Innovative instrument Innovativation in the ground segment?

💳 🔜 📲 🚍 💳 🛶 📲 🔚 🔚 🔚 📲 🔚 📲 🔚 📟 🚳 🛌 📲 🛨 📰 📾 📾 🖛 👘 → THE EUROPEAN SPACE AGENCY

"Mission Algorithm and Analysis Platform"

\rightarrow It's a Virtual open and collaborative environment that...

Enables researchers to easily discover, process, visualize, and analyze large volumes of data.

_			×
_		_	-
		_	-
_			
			-

Provides a versioncontrolled science algorithm development environment that supports tools, colocated data, and processing resources.

Addresses intellectual property and sharing issues related to collaborative algorithm development and sharing of data and algorithms.

→ Data visualisation

2D data visualisation

- Search, discovery, overlay
- L1, L2, L3

Time series visualisation

0.2 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

- PROBAV_TOC_NDVI

In-situ measurement (e.g. Forest Observation System)

Meteorological data

3D data visualisation

PolinSAR, TomoSAR

12

→ Data processing (product generation)

Generate products

- Systematic generation (every 6 months)
- On demand

Download data

Share computed data

Official L1, L2/3 algorithms

Research L1, L2/3 algorithms

• Share link to give access to the data

Select existing algorithms

- Export figure
- Embedded content in webpages, pdf...

Upload data

• raster, vector, table

____ ➡ ➡ ▋▋ 🔚 ____ ▋▋ 📕 ___ 🚝 ____ 🔯 🛌 ▋▌ 🗮 🗮 ___ G

→ Product Algorithm Laboratory

Modify/write processing algorithms

- Modify official L1, L2/3
- Compute own L1, L2/3
- Generate new products

Scripts Docs Assets		S1 *	Get Link Save 👻 Run Reset 👻 🕸
Filter scripts	-	1	<pre>var p = function(image) { return image.log10().multiply(10)};</pre>
 Private 		3	<pre>var pol = ['HH'];</pre>
🖹 S1 🛛 🖸 📋		4	
+ New folder		5	<pre>var imgHH = ee.ImageCollection('COPERNICUS/S1').</pre>
+ New file		6	filter(ee.Filter.eq('transmitterReceiverPolarisation', pol)).
i new nic		7	filterMetadata('instrumentMode', 'equals', 'IW');
 Shared 		8	
+ New repository		9	Map.addLayer(imgHH),
 Examples 		10	Map.setCenter(4.36, 50.86, 11);
* Image	Ŧ		

Tools for self validation

Create figures

"Free access to all the functionalities"

- With a limit of processing time and data storage
- Additional resources can be ordered or allowed for specific users

Share algorithms

 Share link to give access to the algorithm and/or environment

→ Information sharing

Forum

- FAQ
- Conversations between users, with the agency...

Link to social networks

- Blogs
- Facebook, Twitter, Research gate...

Wiki

All the information related to the mission, instrument, data acquisition...

Link to online notebooks

• Write and execute live code (e.g. Jupyter)

NASA-ESA Multi-Mission Algorithm and Analysis Platform Cesa

Unified user access to the functions of joint NASA-ESA MAAP

BIOMASS Product Algorithm Laboratory

→ THE EUROPEAN SPACE AGENCY

biopal.org

→ Product Algorithm Laboratory

Algorithm initial definition

First algorithm implementation

- Processing algorithms evolution is easier as the development and implementation are made within the same environment
- Allow to arrive faster to stable algorithms for R&D missions on a user cooperative approach
- People outside the core science team can contribute to the product improvement cycle

Mission Algorithm and Analysis Platform (MAAP)

Concepts of "Open Science" -> Well adapted to R&D EO missions

Conclusion

- The MAAP brings together data from various spaceborne missions from various organizations to support development of global biomass maps.
- BioPAL and the Concept of the Product Algorithm Laboratory make it easier to reproduce results and build from existing work.
- They encourage collaboration between data scientists.

OEF DEMO AREA - Today 05:45 pm - The BIOMASS Mission Algorithm and Analysis Platform and the Open Source Algorithm Environment BioPAL

