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Overview

Biomass’ secondary mission objectives:
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Subsurface geology in arid regions

Mapping sub-surface geology in deserts

→ palaeo-hydrological structures (rivers, lakes)
→ study past climate of desert areas
→ prospecting of fossil water resources

P-band SAR provides a deeper penetration
(up to 5 meters in dry sand)
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Subsurface geology in arid regions

Example #1

Left: SPOT Image of the Bir 
Safsaf desert region in 
southern Egypt, covering 
30x30km and showing an 
homegeneous aeolian sand 
cover.

Right: ALOS (JAXA) L-band 
radar image revealing 
numerous buried paleo-
channels under the superficial 
sand layer (penetration depth 
estimated to 1-2 meters).
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Subsurface geology in arid regions

Example #2

Top: Landsat-5 image of a desert region in northern 
Sudan, covering an area of about 200x150km.

Bottom: ALOS (JAXA) L-band radar image 
revealing a past drainage system partially covered 
under the sand deposits. The dark structure
in the lower left part of the image is likely to be an 
ancient mega-lake.
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Subsurface geology in arid regions

Example #3

Left: SPOT image of the Ksar
Ghilane oasis region in 
southern Tunisia, palaeo-
channels are hidden by aeolian 
sand deposits.

Middle: ALOS-2 L-band radar 
image, showing some 
subsurface features still blurred 
by the radar return of the 
superficial sand layer.

Right: SETHI P-band radar 
image, revealing sub-surface 
hydrological features in a very 
efficient way (ONERA/CNES).
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Ice sheet velocity mapping

• Ice sheet mass balance can be estimated from ice velocity and ice 
thickness (flux).

• Biomass has a potential in the Antarctic whereas ITU frequency
allocations prevent Biomass from mapping Greenland, where ice 
velocities are mapped routinely with S1.

• Biomass has its smaller polar gap over the South Pole (unlike S1).
• Currently available Antarctica maps have an accuracy of 1–17 m/yr, 

while the histogram for the entire Antarctica peaks at 5 m/yr.
• Accuracy is favored by a large temporal baseline, but temporal 

decorrelation may be prohibitive.

Solgaard et al., 2021
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Ice sheet velocity mapping

• Ice sheet mass balance can be estimated from ice velocity and ice 
thickness (flux).

• Biomass has a potential in the Antarctic whereas ITU-R frequency
regulations currently prevent Biomass from mapping Greenland, 
where ice velocities are mapped routinely with S1.

• Biomass has its smaller polar gap over the South Pole (unlike S1).
• Currently available Antarctica maps have an accuracy of 1–17 m/yr, 

while the histogram for the entire Antarctica peaks at 5 m/yr.
• Accuracy is favored by a large temporal baseline, but temporal 

decorrelation may be prohibitive.
• The decorrelation time increases with decreasing frequency due to 

(1) a deeper penetration to more stable scatterers and (2) a smaller 
phase shift resulting from a given spatial shift of scatterers. Rignot, 2012

L-band 46 days

C-band 35 days
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Differential interferometry

Interferometry (applied to data acquired 
from both ascending and descending 
orbits) is preferred to offset tracking:
• If applicable, interferometry offers a better 

velocity accuracy, as needed for most of 
the Antarctic ice sheet.

• Coarse range resolution => the range 
component of the velocity is estimated 
with a poor accuracy if using offset 
tracking.

• When using offset tracking, ionospheric 
scintillations in particular impact the 
azimuth component of the velocity.

Ice velocity map in case of strong 
scintillations (S1, 6 day baseline)

Solgaard et al. 2021
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Temporal decorrelation at P-band

P-band InSAR in percolation
zone (airborne data degraded
to Biomass resolution)• Biomass’s short temporal baselines (~3 days) do 

not offer a sufficient velocity accuracy in most of 
Antarctica.

• Biomass’s temporal baseline corresponding to the 
global mapping cycle (~8 months) may allow the 
low ice velocities in the interior of Antarctica to be 
mapped, but …

• … the P-band correlation time is unknown, as no 
P-band data from the dry snow zone exist.

• In the dry snow zone, the P-band correlation time 
is likely to exceed 8 months …

• … as even in the percolation zone it is sufficient 
for interferometry with a temporal baseline of 
several months.

K-transect

POLARIS SAR 
& sounder
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Ice shelf basal topography: motivation

Reese 2018

Why are ice shelves important?

• Ice shelves can buttress the grounded ice sheet, 
thereby stabilizing it.

• Ice rises and ice rumples contribute to the 
stabilization of the ice shelves.

• Ice shelf thinning can be caused by warm ocean 
water circulation.

• Mean ice shelf thickness can be measured with 
radar altimetry (surface elevation), but the basal 
topography is important, e.g. channels are 
common.
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Ice shelf basal topography: feasibility

Super-
imposed

TomoSAR may be an applicable technique, 
even in presence of volume clutter, but …

• the unambiguous depth must exceed the 
ice shelf thickness.
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Ice shelf basal topography: feasibility

TomoSAR may be an applicable technique, 
even in presence of volume clutter, but …

• the unambiguous depth must exceed the 
ice shelf thickness.

• the voxels must be so small that an 
adequate signal-to-volume-clutter ratio 
results. 
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Ice shelf basal topography: feasibility

Feasibility assessed with an 
electromagnetic model:

• BIOMASS SAR parameters.

• TomoSAR geometry, e.g. kz.

• Ice parameters, e.g. attenuation and
scattering patterns for surface, volume, 
and base from airborne P-band radar.

• TomoSAR processing (direction of arrival 
(DOA) estimation, e.g. with MUSIC).

• Basal topography from DOA

No conclusions yet (work in progress)
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BIOMASS DTM

[1] http://www.esa.int/ESA_Multimedia/Images/2018/10/P-
band_radar_piercing_through_forest_canopy

P-band
Penetrates through forest

Strong ground return

Height of ambiguity 
diversity for BIOMASS 

TOM Stack

BIOMASS TOM Phase
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BIOMASS DTM

BIOMASS Processing Suite
(BPS) L1+STACK 

processors

BIOMASS DTM Processor

BPS L2 processor 

Co-registered and 
relatively calibrated

data
Stacks

L3 DTM

L3 DEM

[1] http://www.esa.int/ESA_Multimedia/Images/2018/10/P-
band_radar_piercing_through_forest_canopy

P-band
Penetrates trough forest

Strong ground return
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BIOMASS DTM – The BIODEMPP

• Proof of concept and prototyping of the BIOMASS DTM 
processor were carried out in the BIODEMPP study

• The study included the prototyping of co-registration 
and calibration modules now included in the BPS 
STACK processor (operational processor)

• Moreover, dedicated modules for DEM  (interferometry 
based) and DTM (interferometry + tomography based) 
were developed 

• Study included verification and validation of methods 
and products with BIOMASS simulated data (both fully 
synthetic and from airborne acquisitions)  

BIODEMPP

Stacking

Calibration

DEM 
Generation

DTM 
Generation

Mosaicking
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BIOMASS DTM – Challenges 

BIODEMPP

Stacking

Calibration

DEM 
Generation

DTM 
Generation

Mosaicking

Tomographic profiles for different volumetric targets (AfriSAR
campaign)

Even for P-band, volume-dominant 
targets are present and require de-bias
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BIOMASS DTM – Challenges 

Tomographic profiles for different volumetric targets (AfriSAR
campaign)

Even for P-band, volume-dominant 
targets are present and require de-bias

Phase center DEM estimation with 
multi-baseline interferometry

Ground steered phase with Sum of 
Kronecker Products (SKP)

Phase center DTM estimation with 
multi-baseline interferometry

The BIODEMPP solution
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BIOMASS DTM – Validation 

1 2 3

4 5

1 2 3

4 5

BIOMASS validation for tropical ionosphere scenario, 
tropical forest (BIOMASS simulation based on TropiSAR)

Validation strategy based 
on DEM/DTM differencing

No ionosphere
Tropical iono
scenario
Boreal iono scenario 
(L1 mitigated)

𝜇𝜇 = 1.35
𝜎𝜎 = 5.36

𝜇𝜇 = 0.41
𝜎𝜎 = 5.75
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