

Lessons learned from building a training data set for land cover mapping at 10m

Myroslava Lesiv, Daniele Zanaga, Ruben Van De Kerchove, Nandika Tsendbazar, Martin Herold and Steffen Fritz

Ising planet BONN Symposium BONN 2022 2022 Taking the pulse Gour planet from space

25th May. 2022 Lesiv et al., 2022 LPS

Background

- High quality training data is a critical input for land • cover/ land use mapping
- New requirements: ullet
 - Very high resolution mapping
 - More thematic details
 - Change detections

Different sources of training data available: \bullet

- on-ground observations and
- visually interpreted very high resolution images.
- existing land cover/land use maps
- automatic generation

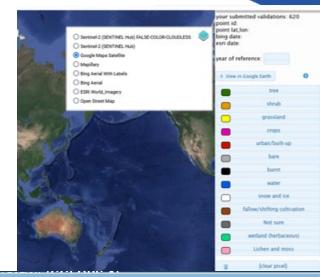
Copernicus Global Land Service Providing bio-geophysical products of global land surface

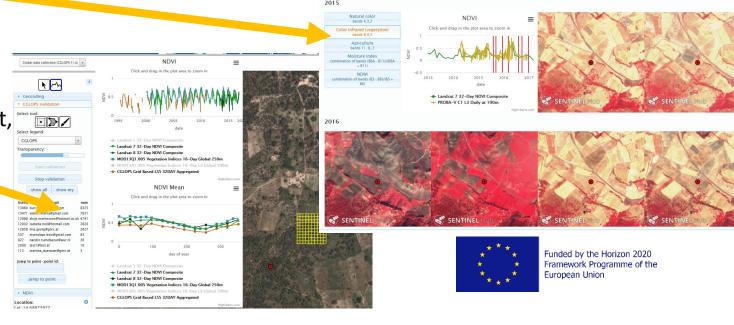
Sentinel-2 10-Meter Land Use/Land Cov

Esri Land Cover

Challenges

- Unknown quality
 - Geolocation errors
 - Thematic errors
 - Timestamp
 - Not clear definitions
- Spatial distribution of data overfitting issue
- Translation from one legend to another
- Translation of point observations into pixels
- Lack of data
- Access to data



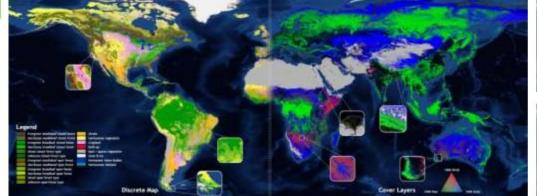

Geo-Wiki tool box

- Very high resolution (VHR) imagery from Google maps, Microsoft Bing, and ESRI
- Google Earth VHR historical images
- Planet time series of images
- Sentinel-2 time-series in False color
- Street level images from Google and Mappilary
- NDVI time series derived from Landsat,
 Proba-V and MODIS data

Concept of a multipurpose data set

Global Land Cover at 100m (JRC)

World Cover at 10m (ESA)



Copernicus Global Land Cover 2015-2019 PROBA-V 100m

Opernicus Dynamic Global Land Cover Layers

Discrete Map (23 classes)

10 Continuous Covers (0-100%) Permanent water is derived from GSWE (Pekel et al., Bulit-up is derived from WSF (Morconcini et al.) Quality Indicators (*) example over Africa, global maps under release test

Algorithm O

Continuous Covers	
Bare	Snow
Crops	Tree
Grass	Urban
Moss	Permanent water
shrub	Seasonal water

A systematic SERVICE providing a <u>DYNAMIC</u>, <u>YEARLY</u>, <u>USER- ORIENTED</u> product at <u>GLOBAL scale</u> @ <u>100m resolution</u> from 2015 onwards

land.coperni ::seeu/global/lcviewer

remotesensing.vito.be

patial Accu

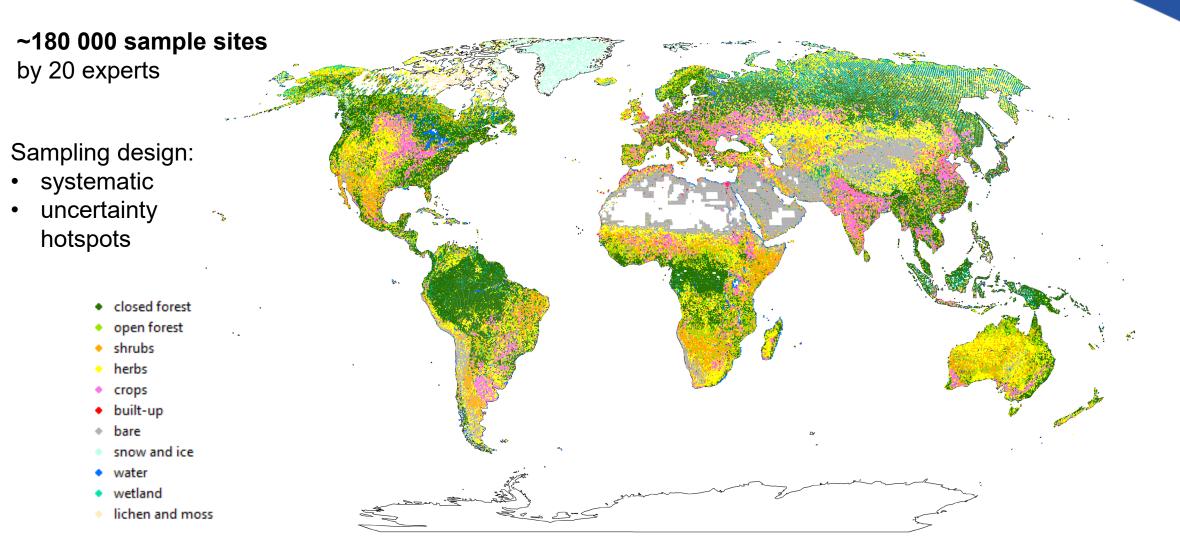
Geo-wiki app

Fractions at 100m Easy translation to discrete land cover classes Training data at 10m

IASA

Data collection workflow

• Initial Geo-wiki training


- Interface, tools, per class examples
- Weekly online seminars to check quality
 - discuss difficult locations
 - randomly revisit some classifications
 - Target <5 % of mistakes

• Comparison with regional products

- Revise disagreeing locations
- Removing land cover class outliers based on spectral information
 - homogeneous pixels

Distribution of reference data 2015

ESA World Cover 2020/2021 at 10m Sentinel 1 and Sentinel 2

180 K (at 100m) pixels ~ 18 Millions (at 10m)

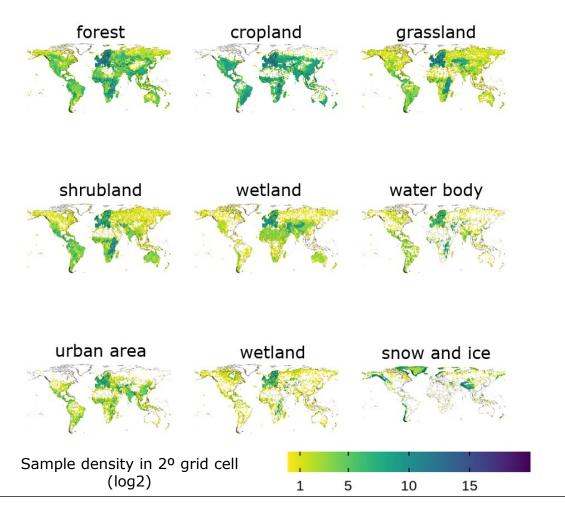
Issues:

- geolocation errors of the underlying images used for visual interpretations
- land cover/land use changes that happened after 2015
- Correct fractions at 100m ~misclassifications at 10m

Landscape in Australia

25th May. 2022 Lesiv et al., 2022 LPS

Training data optimization


- Geolocation errors of labels?
 - subset only those pixels that are surrounded by pixels with the same label
- Land cover changes ?
 - subset sample sites of potential changes by running BFAST model and revising these sites
 - Set of rules based on spectral information
- Misclassifications at 10m resolution?
 - Set of rules based on spectral information

Lessons learned

- Having subpixel information about land cover is important for better defining classes at pixel level
- Homogeneous areas it would be more convenient to label patches/segments rather than pixels
- There are always uncertainties associated with human labeling therefore additional data filtering is needed
 - E.g. taking into account spectral information
- The presented data will be made of open access

Collection of existing reference data sets

~ 7 million samples

years: 1951-2020

spatial units: 10-5000 m

Sources: LUCAS – Land use and land cover survey GLIMS Ramsar GHS Urban Center Database Global Croplands JECAM PRdataGO

caterina.barrasso@idiv.de | carsten.meyer@idiv.de

...

Thank you!

Myroslava Lesiv

International Institute for Applied Systems Analysis

lesiv@iiasa.ac.at