Using the Ensemble of Data Assimilations method to investigate future constellations of microwave sounding instruments on small satellites

Katie Lean¹, Niels Bormann¹, Sean Healy¹, Dirk Schüttemeyer², Janet Charlton³, Ralf Bennartz⁴, Peter Senior⁵, Frank Fell⁴, Bruno Picard⁶, Jean-Christophe Angevain², Stephen English¹

¹ECMWF, ²ESA-ESTEC, ³JCR Systems, ⁴Informus, GmbH, ⁵In-Space Missions, ⁶Fluctus SAS Living Planet Symposium, Bonn, Germany, 23-27 May 2022 Contact: katie.lean@ecmwf.int

Continued benefit from additional MW sounder data

- Previous study at ECMWF* showed continued benefit from adding existing MW sounder data
- No "saturation" point found with existing data
- Number of large, high performance platforms expected to decrease in future
- A constellation of small satellites with MW sounders could significantly improve temporal sampling available in a cost-effective way
- What is the optimal design for a future constellation of small satellites carrying AWSbased MW sounders?

*Duncan, D. I., N. Bormann and E. V. Hólm (2021): On the addition of microwave sounders and numerical weather prediction skill, vol. 147, issue 740, pp. 3703-3718 <u>https://doi.org/10.1002/qj.4149</u>

Considering broad questions of constellation design

- Additional small satellites complement continuing "backbone" constellation of large satellites
- Use AWS-based instrument to form potential small sat constellations
- Key aspects of optimal constellation design to consider:

 Impact of different potential future constellations to be evaluated using Ensemble of Data Assimilations (EDA) method

The EDA method

- EDA consists of:
 - Finite number of independent cycling assimilation systems
 - Uses real and added simulated observations
 - Observations and the forecast model are perturbed to generate different inputs for each member
- Benefit of additional data measured by reduction in variation across different members – "EDA spread" → reducing forecast/analysis uncertainties
- Assumes errors of the simulated observations are realistic

Used for previous ESA and EUMETSAT studies for Aeolus and Radio Occultation. K Lonitz: "Using ensemble spread as a measure of GNSS-RO impact", Friday poster session Cheaper alternative to traditional Observing System Simulation Experiments

(OSSEs) to assess potential of future observing systems

EDA experiments

Baseline	Name	
1	No MW sounders (otherwise full observing system)	
2	(1) + 4 MW temp/hum (Metop A/B and SNPP/NOAA-20)	
3	(2) + 3 MW temp/hum	
4	(2) + 3 MW hum only	

	Simulated small sat expts	Total platform no.	Simulated data added	
Polar orbit -	Polar	8	sounders baseline (2)	
	Polar+	14	- reflect possible future	
	Polar++	20	platforms	
60° inclined _	4x2	8	Each constellation run with	
	6x2	12	humidity only (183GHz) or	
Combination -	Polar+4x2	16	humidity + temp (183 + 50 GHz)	
		2 satellites in	325 GHz not considered here	
C ECN	WF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FO	5		

Simulation of new observations

EDA spread reduction results

Larger spread reduction with more observations

Larger spread reduction with more observations

Different behaviour between extra-tropics and tropics

Different processes responsible for different importance of humidity/temperature channels in the extra-tropics vs tropics

- Importance of factors affecting extraction of wind varies
 - humidity tracing dominant effect in tropics
 - geostrophic balance in extra-tropics

cycling assimilation

propagates

changes

Important interaction between thinning and satellite phasing All obs locations

Even coverage across globe Polar++ (20 sats) Polar++ Reduced Thinning All satellites thinned together - 250 - 225 Satellites proportion of - 200 thinned - 175 individually polar regions due to higher - 150 EDA expt still ongoing! 4x2 - 125 100 **Tropical regions** Inclined orbit · 75 have slightly constellations have fewer obs than high density in 60-50 Polar (8 sat)

Higher

data loss in

overlap

configuration

75°N/S

8-9th Jun 2018

Summary

- 8 sat polar constellation already shows significant reductions
- Clear value of additional temperature sounding channels. In general:
 - For NH/SH, impact T+H \sim 2-3 x H only
 - For tropics, impact T+H \sim 1.5-2 x H only
- Different behaviour in extra-tropics vs tropics
 - Spread reductions in extra-tropics may show less "saturation" than tropics
 - Different atmospheric processes affect relative impacts

Further analysis to include:

- Incorporate Polar++ with no multi-sat thinning will a more extreme number point show "saturation" in NH/SH?
- Consider polar regions more closely
- Influence from distribution differences (polar vs. inclined orbit)

Thank you for your attention!

AWS channel characteristics

Channel	Frequency (GHz)	Bandwidth (MHz)	NEDT used (K)	Footprint (km)	Utilisation
AWS-11	50.3	180	0.85	40	Temp sounding
AWS-12	52.8	400	0.60	40	Temp sounding
AWS-13	53.246	300	0.65	40	Temp sounding
AWS-14	53.596	370	0.60	40	Temp sounding
AWS-15	54.4	400	0.60	40	Temp sounding
AWS-16	54.94	400	0.60	40	Temp sounding
AWS-17	55.5	330	0.65	40	Temp sounding
AWS-18	57.290644	330	0.65	40	Temp sounding
AWS-21	89	4000	0.25	20	Window/cloud detection
AWS-31	165.5	2800	0.55	10	Window/hum sounding
AWS-32	176.811	2000	0.65	10	Hum sounding
AWS-33	178.811	2000	0.65	10	Hum sounding
AWS-34	180.811	1000	0.80	10	Hum sounding
AWS-35	181.511	1000	0.80	10	Hum sounding
AWS-36	182.311	500	1.05	10	Hum sounding

Polar orbit distributions in time

Adapting the all sky error model for loss of low frequencies

• All sky model increases observation error in presence of cloudy signals from observation or model

 Accounts for different representativeness of clouds in observations and model

• Obs errors determine weighting in the assimilation and perturbations applied in the EDA

 Current MW temp sounders scheme uses 23.8 and 31.4GHz channels as indicator of cloud – unavailable for AWS

• New indicator of cloud uses 52.8 GHz window channel

• Based on absolute difference in cloudy and clear sky BT estimates for observation and model

• Experiments with AMSU-A showed new cloud indicator could retain much of positive impact of all sky MW use

Observation Error Saturated cloudy error Clear sky error Increasing cloud signal Change in geopotential height RMS error, NH, 500hPa 0.04 Degradation 0.02 0.00 -0.02 Improvement -0.043 6 9 10 4 5 8 AMSU-A 4 indicator - No AMSU-A Ctrl FUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS Original indicators – No AMSU-A Ctrl

Important interaction between thinning and satellite phasing

8-9th Jun 2018

All obs locations

Higher density 60-75°N/S for inclined orbits

8-9th Jun 2018 All obs locations

- 50

Impacts propagate into stratosphere

