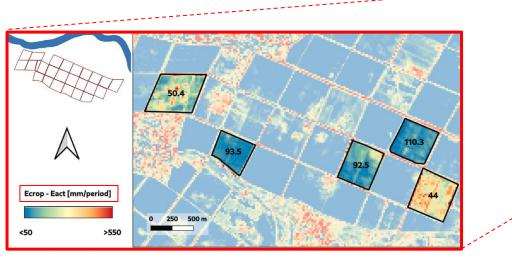
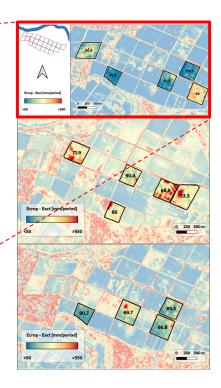
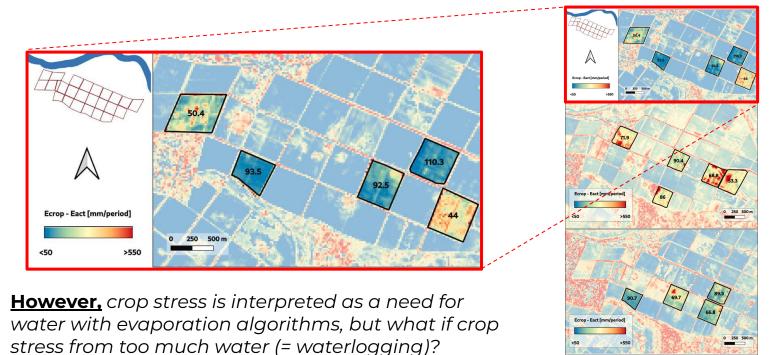
planet


Maximizing sucrose development through optimizing irrigation with a multi-sensor approach


Nadja Den Besten, Susan Steele-Dunne, Richard de Jeu, and Pieter van der Zaag

AGRICULTURE · Taber, Alberta · August 8, 2019

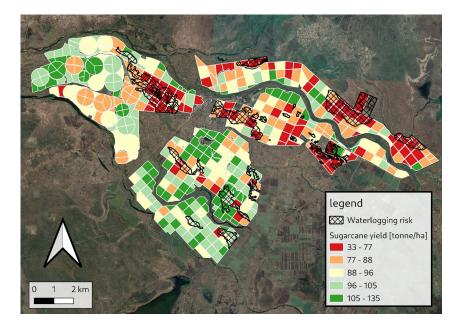
+ Estimating irrigation with remote sensing



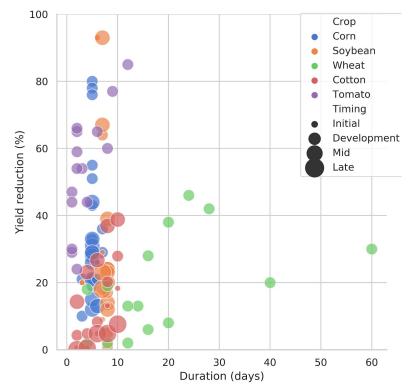
Methodology: Combination of Sentinel-2, MODIS, and, meteorological data

*Figure: den Besten, N. I., Kassing, R. C., Muchanga, E., Earnshaw, C., de Jeu, R. A. M., Karimi, P., & van der Zaag, P. (2021). A novel approach to the use of earth observation to estimate daily evaporation in a sugarcane plantation in Xinavane, Mozambique. Physics and Chemistry of the Earth, Parts A/B/C, 124, 102940.

+ Estimating irrigation with remote sensing

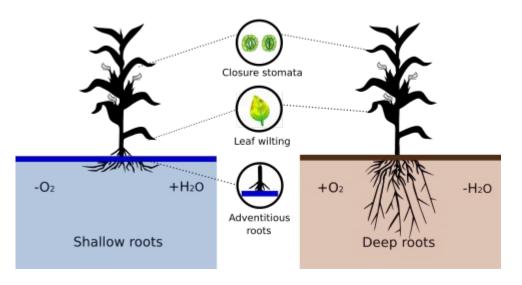


*Figure: den Besten, N. I., Kassing, R. C., Muchanga, E., Earnshaw, C., de Jeu, R. A. M., Karimi, P., & van der Zaag, P. (2021). A novel approach to the use of earth observation to estimate daily evaporation in a sugarcane plantation in Xinavane, Mozambique. *Physics and Chemistry of the Earth, Parts A/B/C, 124*, 102940.


р

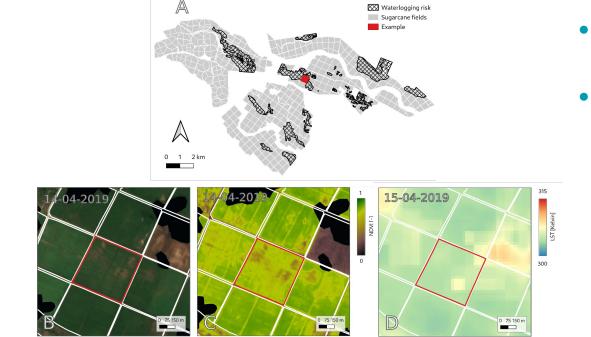
+ Waterlogging in irrigated agriculture (BIG issue!)

+ Waterlogging is actually quite overlooked!

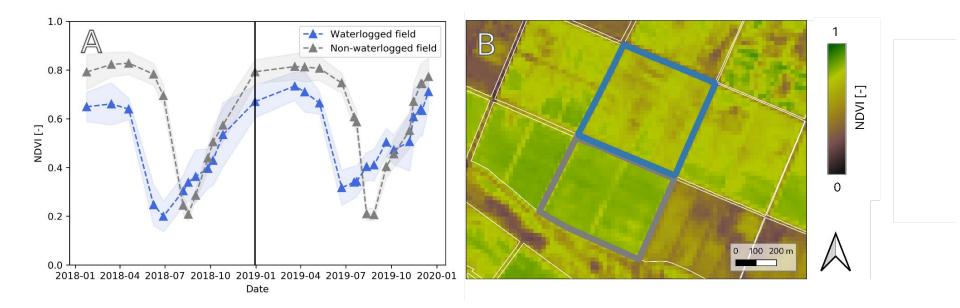


In literature: more focus on drought, studies on waterlogging are minimal

Waterlogging in agriculture - difficult to observe

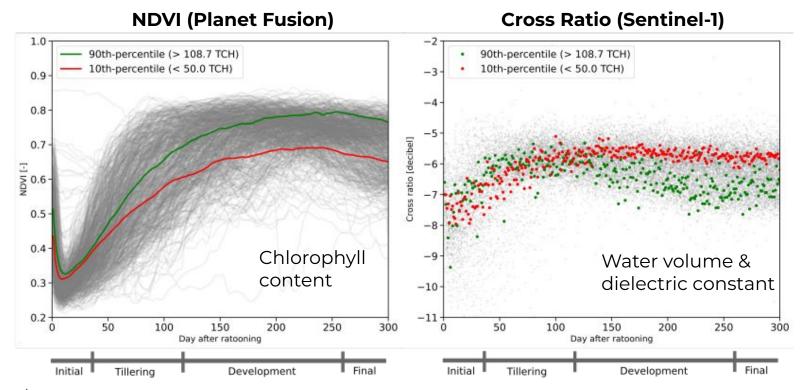

Water Deficit

Waterlogging

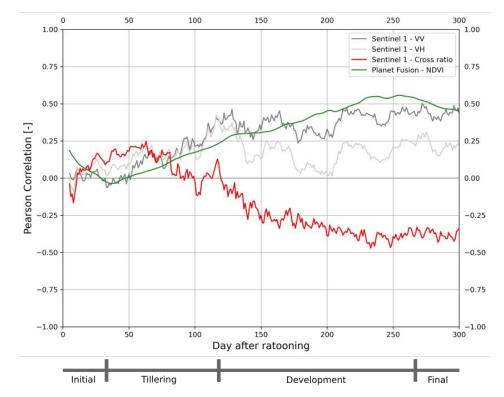

Not so easily seen from space and may even lead to false irrigation advices...

+ Waterlogging seen from space

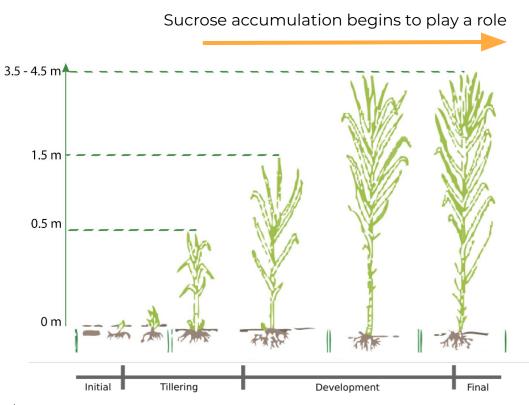
- Difficult to see what is happening underneath a canopy
- E.g. NDVI: You may see effects of waterlogging once the damage is done (that's too late)


+ Waterlogging is affecting crop growth

*Figure: den Besten, N.; Steele-Dunne, S.; de Jeu, R.; van der Zaag, P. Towards Monitoring Waterlogging with Remote Sensing for Sustainable Irrigated Agriculture. Remote Sens. 2021, 13, 2929. https://doi.org/10.3390/rs13152929

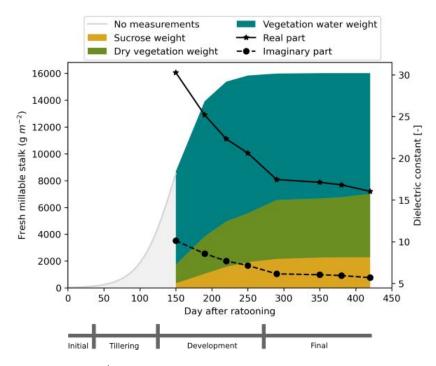

p

Another interesting thing is happening...



*Figure adapted from: den Besten, N.; Steele-Dunne, S.; Aouizerats, B; Zajdband, A.; de Jeu, R.; van der Zaag, P. Observing sucrose accumulation with Sentinel-1 backscatter. Frontiers in remote sensing. 2021

Negative correlation between Crop Yield and Cross Ratio



*Figure adapted from: den Besten, N.; Steele-Dunne, S.; Aouizerats, B; Zajdband, A.; de Jeu, R.; van der Zaag, P. Observing sucrose accumulation with Sentinel-1 backscatter. Frontiers in remote sensing. 2021

We need to further understand what happens inside the plant...

*Figure adapted from: Molijn, Ramses A. et al. Sugarcane Productivity Mapping through C-Band and L-Band SAR and Optical Satellite Imagery. Remote sensing. 2019

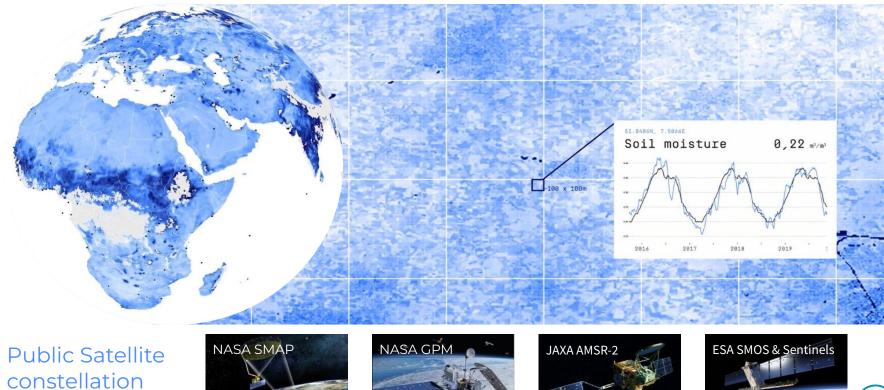
Sampling day	150	190	220	250	290	350	380	420
v_{fw}	0.29	0.23	0.20	0.18	0.15	0.14	0.14	0.13
v_b	0.52	0.50	0.49	0.48	0.45	0.45	0.45	0.44

- Sucrose accumulation changes chemical composition of plant
- Water fraction decreasing → pulls dielectric constant down
- More research needed on how bound water evolves in sucrose accumulating crops

*Figure adapted from: den Besten, N.; Steele-Dunne, S.; Aouizerats, B; Zajdband, A.; de Jeu, R.; van der Zaag, P. Observing sucrose accumulation with Sentinel-1 backscatter. Frontiers in remote sensing. 2021

• Waterlogging in irrigated agriculture is an issue and overlooked

- Example Mozambique: waterlogging is prohibiting optimal sucrose yield (even in a drought prone area)
- Waterlogging is overlooked in satellite retrieved evaporation algorithms for irrigation and should be considered to optimize (sucrose) production
- Sucrose accumulation can be observed with Sentinel-1 backscatter
- The dielectric constant of sugarcane <u>decreases</u> over the growing season (opposite to e.g. corn) pulling down S1 backscatter


den Besten, N. I., Kassing, R. C., Muchanga, E., Earnshaw, C., de Jeu, R. A. M., Karimi, P., & van der Zaag, P. (2021). A novel approach to the use of earth observation to estimate daily evaporation in a sugarcane plantation in Xinavane, Mozambique. *Physics and Chemistry of the Earth, Parts A/B/C, 124,* 102940.

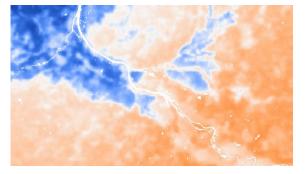
den Besten, N.; Steele-Dunne, S.; de Jeu, R.; van der Zaag, P. **Towards Monitoring Waterlogging with Remote Sensing for Sustainable Irrigated Agriculture.** *Remote Sens.* **2021**, *13*, 2929. https://doi.org/10.3390/rs13152929

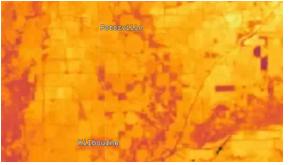
den Besten, N.; Steele-Dunne, S.; Aouizerats, B; Zajdband, A.; de Jeu, R.; van der Zaag, P. Observing sucrose accumulation with Sentinel-1 backscatter. *Frontiers in remote sensing*. 2021

Molijn, Ramses A. et al. Sugarcane Productivity Mapping through C-Band and L-Band SAR and Optical Satellite Imagery. *Remote sensing.* 2019

Planet's planetary variables

© Planet PBC- Proprietary & Confidential





D

+ Planet's planetary variables

Soil water content [m³/m³] Land surface temperature [K] Biomass proxy [-]

100 x 100 m

Near Real Time

20 years archive

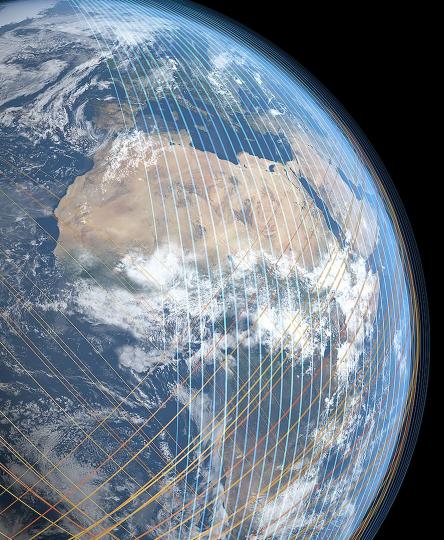
Global

100 x 100 m

Near Real Time

20 years archive

Global


10 x 10 m

Near Real Time

4 years archive

Global

р

Thank You.

Engage with Planet's Science Programs and apply here for Planet Data via ESA Earthnet go.planet.com/lps22

Nadja Den Besten Remote sensing scientist nadja@planet.com

planet.

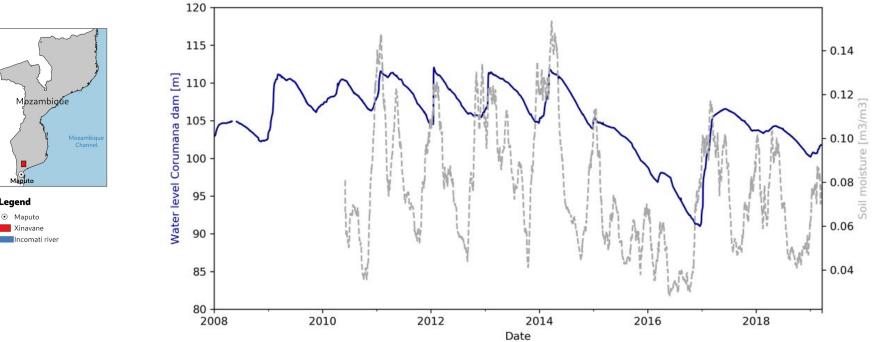
Maximizing sucrose development through optimizing irrigation with a multi-sensor approach Nadja Den Besten, Planet

AGRICULTURE -

- The context
- Irrigation and remote sensing: what if there is too much water?
- Stresses crop? Waterlogged or just sucrose accumulating?

Another interesting thing is happening with observing sugarcane

So, we need to consider crop stresses resulting from other stresses


Waterlogging is prohibiting optimal crop yield (even in a drought prone area)

1. Waterlogging is affecting sucrose content

....

Soil moisture (L-band, SMAP) and water availability

On a field-level water shortage was not the issue

Mozambique Maputo Legend

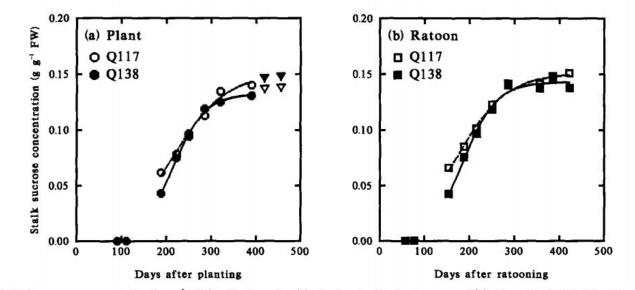
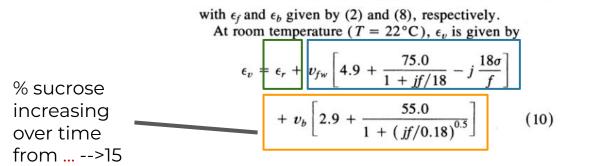


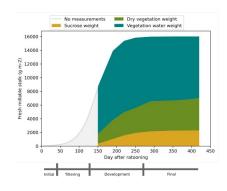
Fig. 5. Stalk sucrose concentration (g g⁻¹ FW) with time after (a) planting for the plant crop, and (b) after ratooning for the ratoon crop. The fitted logistic equations were: Plant Q117 $Y = 0.150 \pm 0.009/(1 + \exp(-0.017 \pm 0.004^{*}(X - 213 \pm 9.3)))$, $R^{2} = 0.94$. Plant Q138 $Y = 0.132 \pm 0.004/(1 + \exp(-0.028 \pm 0.003^{*}(X - 214 \pm 3.6)))$, $R^{2} = 0.98$. Ratoon Q117 $Y = 0.151 \pm 0.003/(1 + \exp(-0.018 \pm 0.002^{*}(X - 172 \pm 3.6)))$, $R^{2} = 0.98$. Ratoon Q118 $Y = 0.143 \pm 0.003/(1 + \exp(-0.027 \pm 0.003^{*}(X - 186 \pm 3.7)))$, $R^{2} = 0.99$. Points shown as triangles were excluded from the fitted equations.

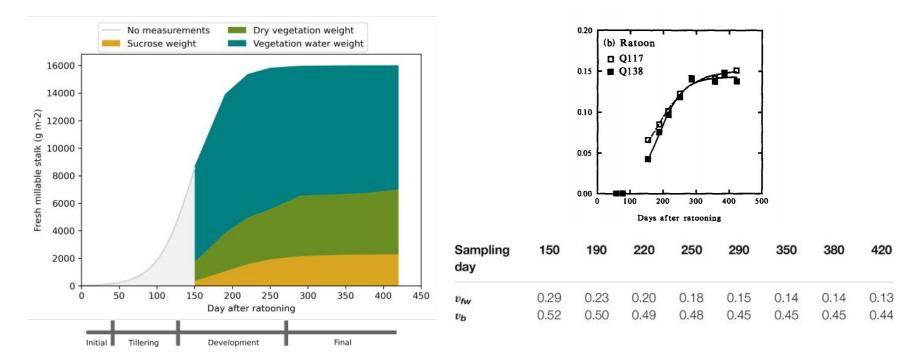
Microwave Dielectric Spectrum of Vegetation— Part II: Dual-Dispersion Model

FAWWAZ T. ULABY, FELLOW, IEEE, AND MOHAMED A. EL-RAYES

To explain the changes in the plant and its effect on dielectric constant of vegetation and thus backscatter...


$$\epsilon_v = \epsilon_r + v_{fw}\epsilon_f + v_b\epsilon_b \tag{9}$$


with ϵ_f and ϵ_b given by (2) and (8), respectively. At room temperature ($T = 22^{\circ}$ C), ϵ_v is given by


$$\epsilon_{v} = \epsilon_{r} + v_{fw} \left[4.9 + \frac{75.0}{1 + jf/18} - j \frac{18\sigma}{f} \right] + v_{b} \left[2.9 + \frac{55.0}{1 + (jf/0.18)^{0.5}} \right]$$
(10)

- Ulaby: "Hence we shall model the dielectric constant of vegetation (Ev) as a simple additive mixture of three components
 - 1. Er a non-dispersive residual component
 - **2.** VfEf a free water component, where Vfw is the volume fraction of free water and Ef is its dielectric constant
 - **3.** VbEb a bulk vegetation-bound water component, where Vb is the volume fraction of the bulk vegetation-bound water mixture and Eb is its dielectric constant"

$$\epsilon_v = \epsilon_r + v_{fw}\epsilon_f + v_b\epsilon_b \tag{9}$$

*Left Figure adapted from: den Besten, N.; Steele-Dunne, S.; Aouizerats, B; Zajdband, A.; de Jeu, R.; van der Zaag, P. Observing sucrose accumulation with Sentinel-1 backscatter. Frontiers in remote sensing. 2021

*Right Figure adapted from: Muchow, R. C., Robertson, M. J., and Wood, A. W. (1996). Growth of Sugarcane under High Input Conditions in Tropical australia. Ii. Sucrose Accumulation and Commercial Yield. *Field Crops Res.* 48, 27–36. doi:10.1016/0378-4290(96)00042-1