

→ THE EUROPEAN SPACE AGENCY

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

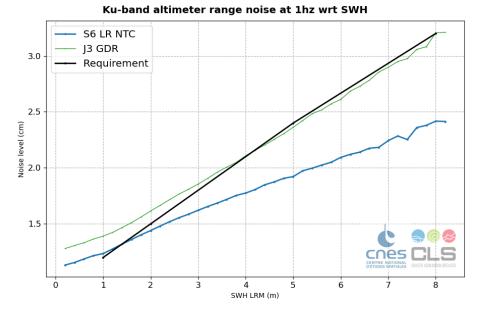
EUMETSAT CECMWF

Sentinel-6 PDAP products assessment over ocean

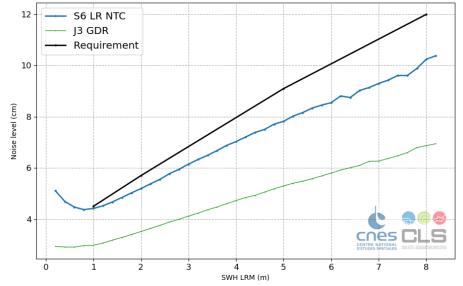
CNES⁽¹⁾ on behalf of MPWG members (EUMETSAT⁽²⁾, ESA⁽³⁾, NOAA⁽⁴⁾, NASA⁽⁵⁾, CNES) With the support from CLS⁽⁶⁾

Claire Maraldi⁽¹⁾, Emeline Cadier⁽⁶⁾, Adrien Guerou⁽⁶⁾, Salvatore Dinardo⁽⁶⁾, Thomas Moreau⁽⁶⁾, François Boy⁽¹⁾, Nicolas Picot⁽¹⁾, Gilles Tavernier⁽¹⁾, Cristina Martin-Puig⁽²⁾, Marco Meloni⁽²⁾, Remko Scharroo⁽²⁾, Carolina Nogueira Loddo⁽²⁾, Craig James Donlon⁽³⁾, Marco Fornari⁽³⁾, Robert Cullen⁽³⁾, Luisella Giulicchi⁽³⁾, Walter H. F. Smith⁽⁴⁾, Alejandro Egido⁽⁴⁾, Eric Leuliette⁽⁴⁾, Jean-Damien Desjonqueres⁽⁵⁾, Shailen Desai⁽⁵⁾

ESA UNCLASSIFIED – For ESA Official Use Only


LR NTC altimeter range noise

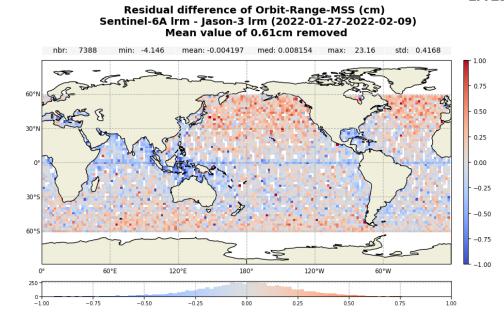
Ku Band


- Lower noise on S6 with lower Significant Wave Height (SWH) dependency
 - Due to better sampling and higher PRF

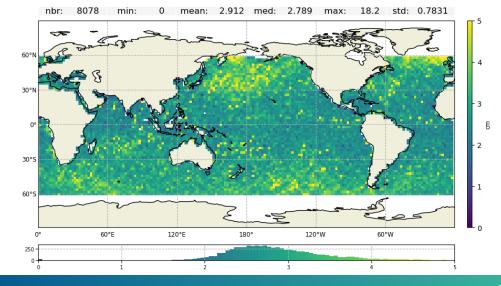
C band

- Higher noise on S6 than J3
 - Expected (less pulses in radar cycle)
- **Within specification**

C-band altimeter range noise at 1hz wrt SWH


LR NTC altimeter range

Ku Band

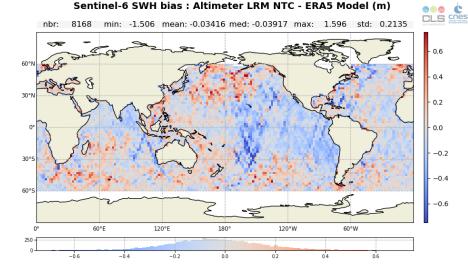

- Very good consistency with J3
 - Bias < cm</p>
 - Very low standard deviation
 - > No hemispheric bias \rightarrow validation of orbit quality

Open issues

- Equatorial signature
 - Also seen with JPL orbits (Shailen Desai, S6VT)
- Small SWH dependency
- On-going investigation, only observed on range retracking estimates

Residual difference of Orbit-Range-MSS (cm) - Standard deviation Sentinel-6A Irm - Jason-3 Irm (2022-01-27-2022-02-09)

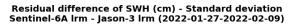
LR NTC SWH

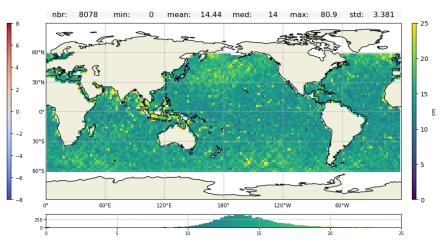

Lower noise on S6

- Differences at low SWH linked to different negative SWH value management
- Small dependency wrt SWH

Excellent agreement with J3

- Mean difference centered around -1.7 cm only
- > No geographical pattern


Good match with models



Residual difference of Significant Wave Height (cm) Sentinel-6A Irm - Jason-3 Irm (2022-01-27-2022-02-09)

120°F

-1.538

S6 LR NTC J3 GDR

SWH LRM (m)

16

12

10

3.233

std:

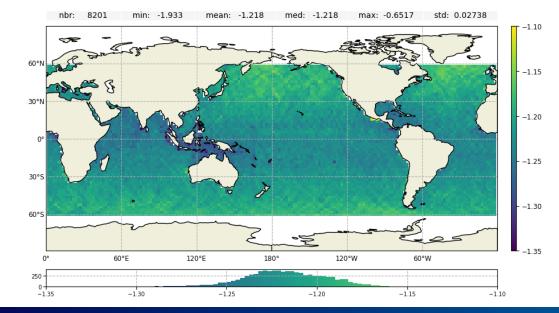
33.86

evel (cm)

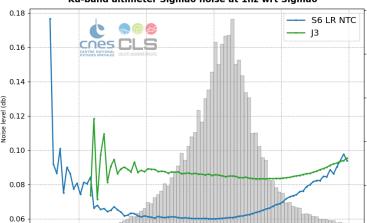
Ku-band altimeter SWH noise at 1hz wrt SWH

cnes

cnes C


LR NTC sigma0

Lower noise on S6, largely improved

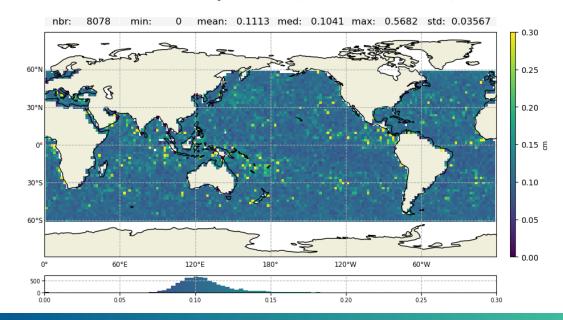

Due to better radiometric resolution

Bias of -1.22 dB on side B

- > Note: bias taken into account before wind computation
- Excellent agreement with J3

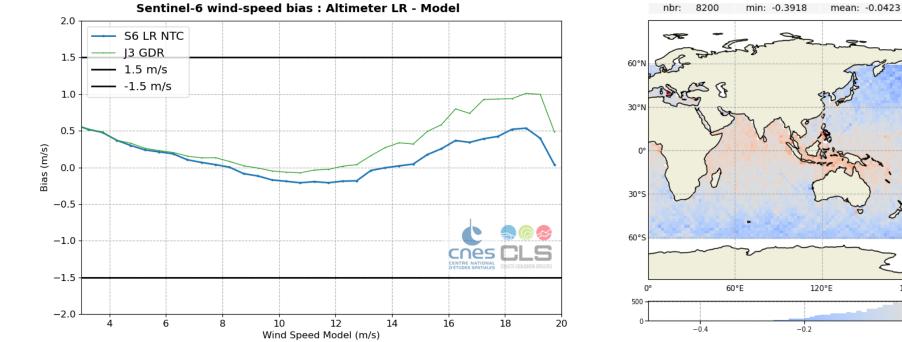
Residual difference of Altimeter Sigma0 (dB) Sentinel-6A lrm - Jason-3 lrm (2022-01-27-2022-02-09)

Residual difference of Sigma0 (db) - Standard deviation Sentinel-6A Irm - Jason-3 Irm (2022-01-27-2022-02-09)


Sig0 LRM (dB)

12

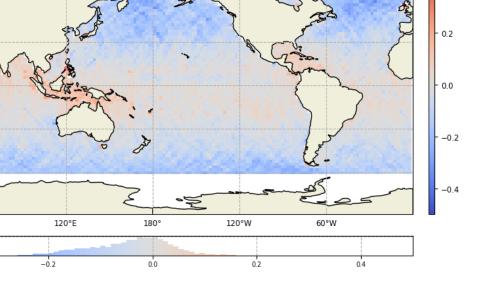
10


14

16

Wind speed

- Collard wind model for both S6 and J3 •
- S6 in line with J3 (bias < 5 cm/s) *


Residual difference of Altimeter wind speed (m/s) Sentinel-6A Irm - Jason-3 Irm (2022-01-27-2022-02-09)

med: -0.03226

mean: -0.0423

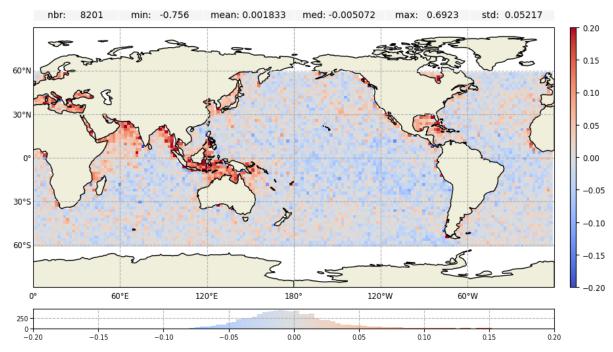
nbr: 8200

min: -0.3918

max: 2.558

0.4

cnes


std: 0.08878

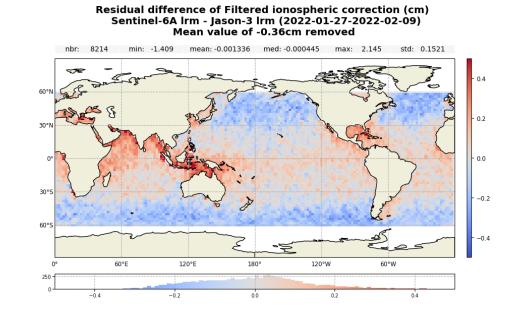
LR NTC Sea State Bias (SSB)

- S6 and J3 share the same J3 GRD-F SSB
 - <cm bias</pre>
 - Small discrepancies in bloom regions
 - > J3 SSB very consistent elsewhere

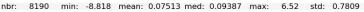
Residual difference of Sea state bias (cm) Sentinel-6A lrm - Jason-3 lrm (2022-01-27-2022-02-09) Mean value of 0.06cm removed

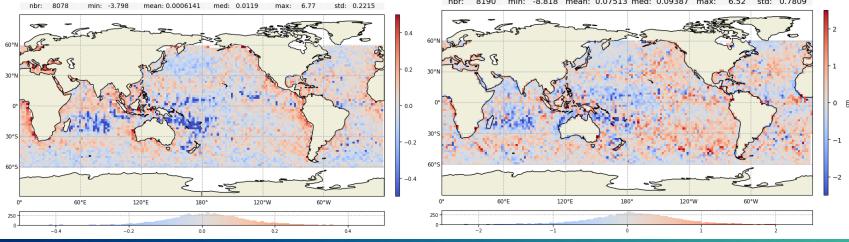
LR & HR NTC geophysical corrections

Ionospheric correction *


- In line with J3
- <cm bias \geq

Dry troposphere •

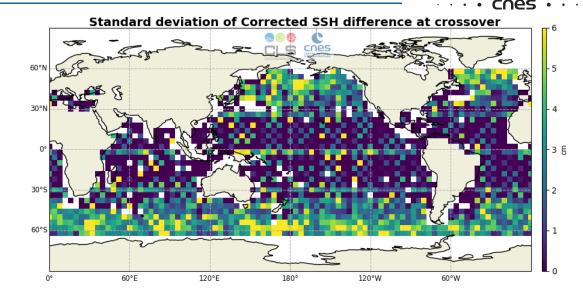

Not shown. In line with J3

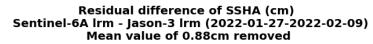

Wet troposphere from radiometer *

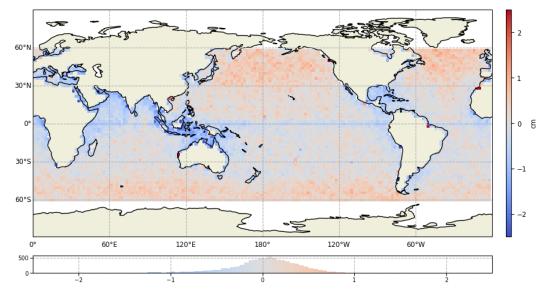
- \succ In line with J3
- Negligible bias wrt ECMWF model

Wet tropospheric correction difference : Radiometer - ECMWF model (cm)

Residual difference of Radiometer wet tropospheric correction (cm)

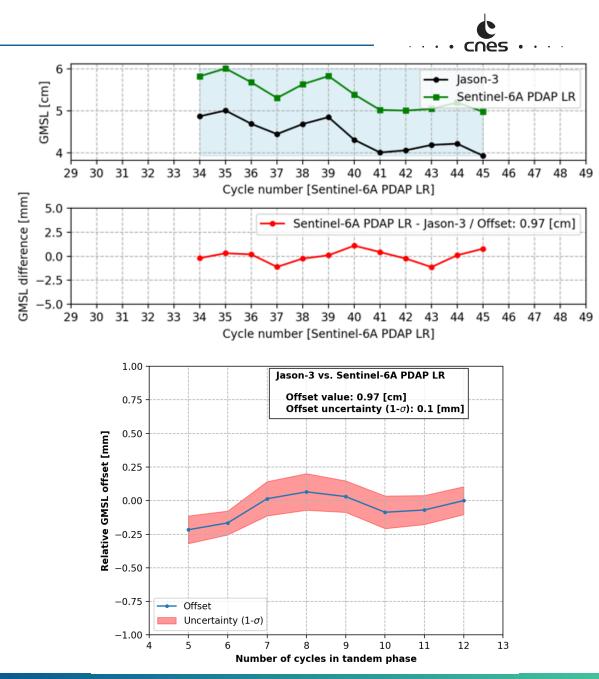

Mean value of -0.05cm removed


Sentinel-6A Irm - Jason-3 Irm (2022-01-27-2022-02-09)


LR NTC corrected Sea Surface Height

Corrected SSH error at Xovers

- Within specification
 - Global = 3.57 cm
 - Over Pacific ocean = 2.68 cm
- Low values in area with small waves
- Metric impacted by geophysical effects in high SWH regions
- Very consistent with Ja3
 - SSHA geographical differences of the order of +/-1 cm



LR NTC - stability and drift

- Inter-mission bias (side-B)
 - Stable with max oscillation amplitude around +/-2 mm
 - Offset of 0.97 cm
 - Benefits from
 - o PDAP evolutions during the first phase of CalVal
 - o PDAP stable version over the side-B period
 - o POE-F over the period

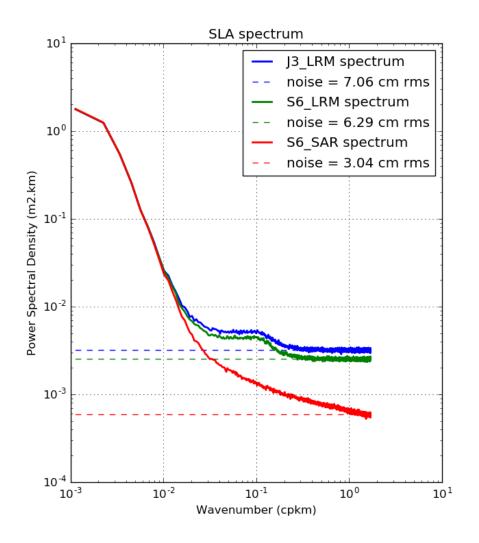
Uncertainty on the GMSL bias (side-B)

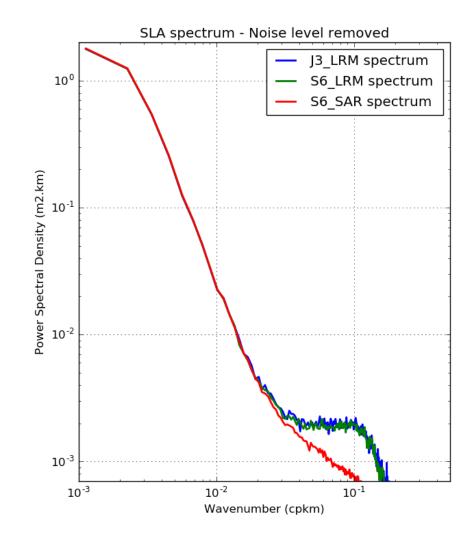
- Can be a large contributor to the total GMSL trend uncertainty between two consecutive missions
- Key result of the tandem phase
- > Very stable bias and uncertainty about 0.1 mm $(1-\sigma)$
- NB same order of magnitude that for Jason-1/-2/-3 missions (~0.2 mm)
- Impact of instrumental drift on GMSL
 - Impact on long term times series
 - Numerical retracking needed

HR altimeter range - Ku band - noise

Noise

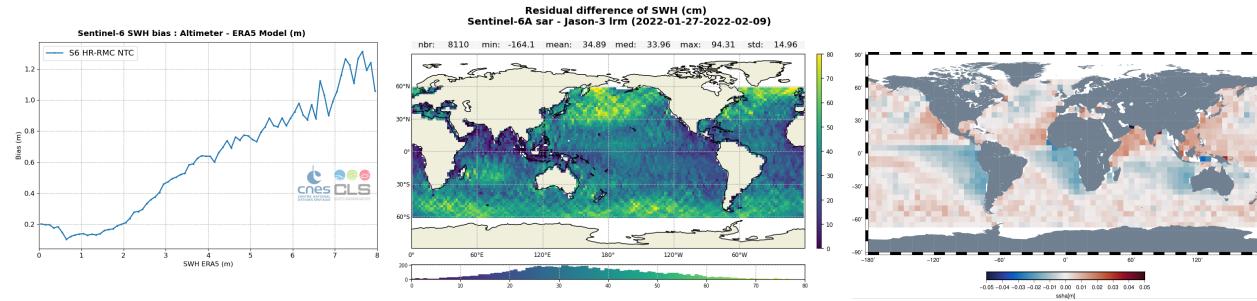
- Excellent performances for noise (well below S3)
 - Higher number of looks
 - Slight deviation for highest swh (swell sensitivity)
- RMC noise equivalent to RAW noise

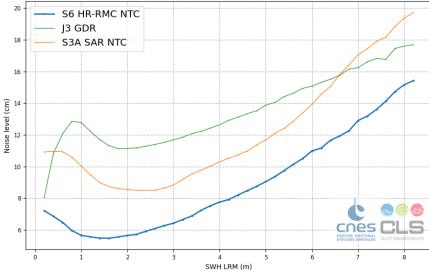

J3/S6 residuals


- Up to 6 cm bias between HR-LR
 - o Skewness to be aligned with LR
 - o Impact of Doppler ambiguities management to be assessed
 - processing optimizations required (skewness, SWH, SSB) before full use of S6 HR promising capabilities

Ku-band altimeter range noise at 1hz wrt SWH S6 HR-RMC NTC J3 GDR 3.0 S3A SAR NTC Requirement 2.5 /el (cm) 2.0 Voise lev 1.5 1.0 cnes CL 0.5 SWH LRM (m) Ku-band altimeter range bias : SAR - LRM (cm) CLS cnes min: -9.547 mean: 1.574 med: 1.265 max: 22.66 std: 1.275 nbr: 8183 30°9 120°W 120°E 180° 60°W

Corrected SSH spectra

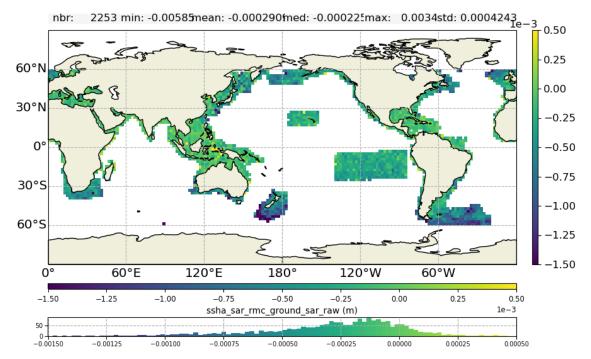



HR SWH

Excellent performances for noise (well below S3)

- Differences at low SWH linked to different negative SWH value management
- Up to 80cm bias between HR-LR
 - Vertical waves motion impact (known issue observed on S3 too)
 - Impact on SSHA via SSB
- LR-HR Ascending/Descending tracks bias link to meridional wind component (known issue observed on Sentinel-3 too)

Altimeter SAR swh noise at 1hz wrt SWH


HR – Range Migration Correction (RMC) mode validation over ocean

No sensitivity observed wrt the mean sea surface slopes & the distance to the coast

Range differences have a slight SWH dependency (from 0 to 2.5mm) but it will be absorbed with SSB

Negligible RAW-RMC differences

- Retracked parameters
 - o <2mm on range
 - o <1cm on SWH
 - o <0.02dB on sigma0</p>
- Negligible differences over open ocean and coastal areas
- Negligible differences for inland waters
 - E.g. Over Amazon basin: 95% of measurements with range discrepancies <2cm.
- ♦ \rightarrow RMC everywhere as operational mode

Sentinel-6A - Diff. SSHA (SAR_RMC_GROUND-SAR_RAW)

Conclusion

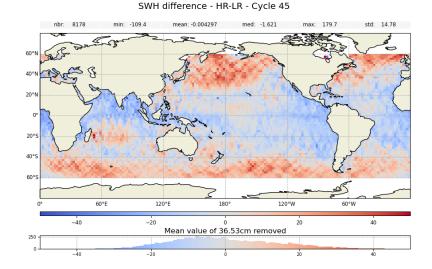
- S6-MF data of very high quality
- Very good inter-mission bias between JA3 data and S6-MF Altimeter SideB data
 - > Very stable bias and uncertainty about 0.1 mm $(1-\sigma)$
 - Numerical retracking needed for long term trends
 - Future PDAP evolutions will ensure GMSL trend continuity with JA3
- RMC and RAW data inline

Some remaining processing improvements required

- LR data
 - Remaining differences with JA3 as a function of SWH and other features
 - Application of small Look up Tables at higher level to merge S6-MF with other data is still required
- > HR data: skewness, vertical waves motion, wind effects, range walk correction
- S6PP CNES/CLS prototype was used for investigations during CalVal and will still be used for R&D and future PDAP evolutions

Full mission reprocessing

HR new configuration with substack


- > 322 looks: compromise between HR bias reduction and noise
- Removes outer beams affected by
 - Vertical wave velocity effects
 - Range Walk effect
 - Doppler ambiguities

Main impact on SWH

- HR-LR bias: ~14cm reduction
- HR-LR SWH dependency reduced

Full mission reprocessing on-going

PDAP : operational

PDAP: 322 looks

cnes

SWH difference - HR-LR - Cycle 45

