

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

EUMETSAT CECMWF

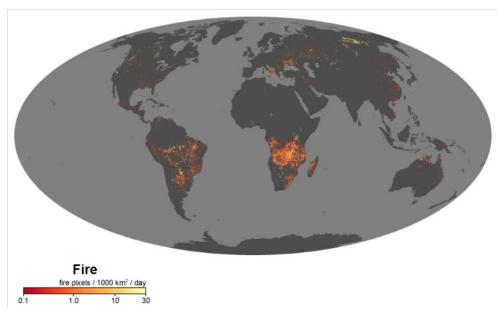
Active wildfires characterization from space: explaining the complementary value of hyperspectral PRISMA data

Stefania Amici¹, Dario Spiller, Luigi Ansalone³ and Lee M. Miller r⁴

1 Istituto Nazionale di Geofisica e Vulcanologia 2 University of Rome La Sapienza School of Engineering Aerospace 3 Italian Space Agency 4 Pacific Northwest National Laboratory

25-May 2022

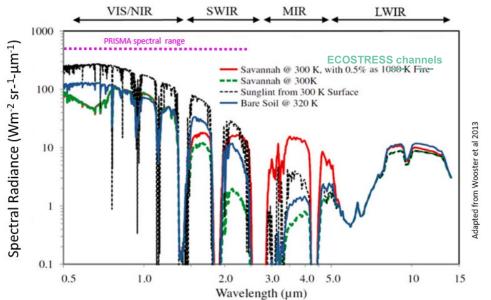
ESA UNCLASSIFIED – For ESA Official Use Only



Overview

- Framework
- Benefits and limitation
- Active fire characterization techniques: HFDI, CNN classification and temperature
- Case studies
- PRISMA complementarity
- Remarks

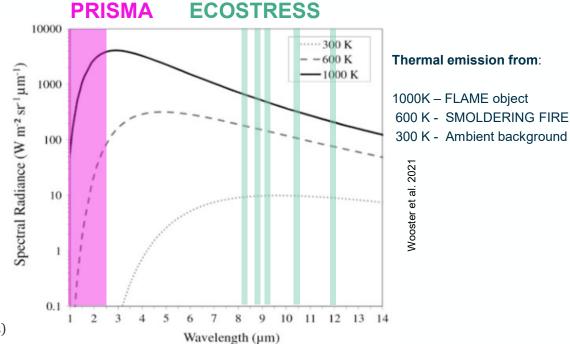
August 2021 active fire map based on MODIS observations White pixels show as many as 30 fires in a 1,000-square-kilometer area per day. Orange pixels show as many as 10 fires, while red areas show as few as 1 fire per day.


Credits FIRE Earth Observatory NASA

https://earthobservatory.nasa.gov/global-maps/MOD14A1_M_FIRE

Framework

FIRE SPECTRAL FEATURES



Top-of-atmosphere spectral radiance simulated at four different target pixels (note logarithmic x and y axes) using the MODTRAN 5 radiative transfer code.

in Fig. are shown the simulations for a savannah surface at 300 K; the same surface but with a 1000 K fire covering 0.5 % of the ground field-of-view (FOV), specularly reflected sunglint from a 300 K surface; and solar-heated (320 K) bare soil

The pixel containing the sub-pixel fire shows a signal highly elevated in the MIR $(3-5 \mu m)$ spectral region compared to all other targets, equivalent to a brightness temperature of around 400 K (Wooster M.J. et al. (2013). https://doi.org/10.1007/978-94-007-6639-6_18)

FIRE THERMAL EMISSION

Emitted spectral radiance for Blackbodies at typical flaming (1000K) and smouldering 600K temperature Atmospheric window are shaded in grey

Benefits and limitations

	PRISMA	EnMap	VIIRS	MODIS	SENTINEL 3	MSG-SEVIRI	LANDSAT 8-9	Sentinel 2A-B	ECOSTRESS
Spatial resolution	30m	30m	375m- 750m	250m- 500m- 1000m	500m- 1000m	1000m	15m- 30m- 100m	10-20m	50-60m
Spectral coverage	VNIR- SWIR	VNIR- SWIR	VNIR-SWIR-MIR- TIR	VNIR- SWIRMIR TIR	VNIR-SWIR- MIR- TIR	VNIR- SWIR-MIR- TIR	VNIR-SWIR-TIR	VNIR- SWIR	SWIR –TIR
Number of bands	240	225	21	36	21 +2	12	9 +2	13	1 + 5
Repetition time	5 Days	27days 5 days	Daily	Daily	Daily	15min	8 days	5 days	Variable*
Swath width	30 km (2.77°)	30Km	3060 km	2330-km	1400km (nadir)	Main full Earth imagery (EU- Africa)	185 kilometers	290 km	384 Km
PAN channel	Yes	No	No		No	No	Yes	No	No

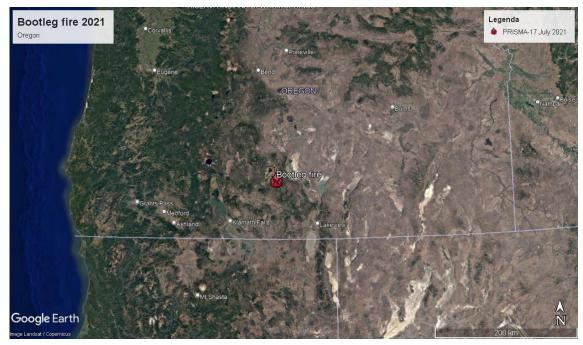
Benefits	
Limitatio	
ns	

* The true revisit period for a given location is variable based on the instrument's orbital cycle aboard the ISS

💻 🔜 📲 🚍 💳 🛶 📲 🔚 🔚 🔜 📲 🔚 🔚 🔤 🛻 🚳 🍉 📲 🚼 🖬 💶 📾 🎃 🍁 🖬

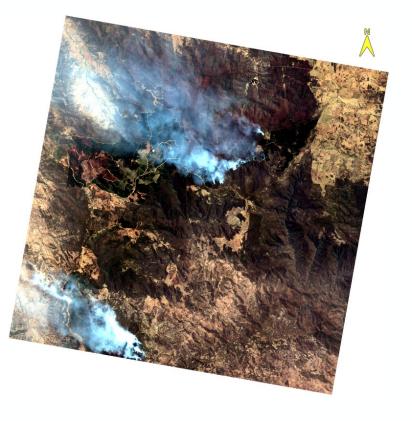
Active fire characterization techniques

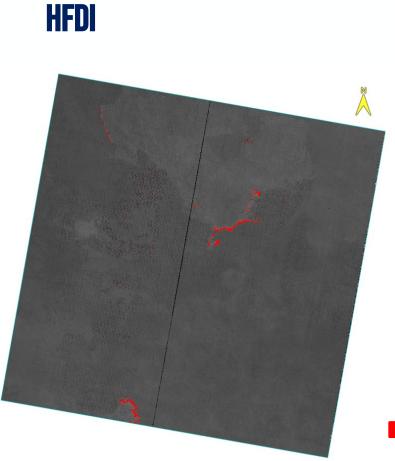
Bush fire - NSW 2019 (Australia)


 2019–20 bushfire season was the most widespread, extreme and catastrophic that Australia has ever experienced since European settlement

Bootleg fire 2021 (Oregon)

- Started on 6th july 2021 in south Oregon
- Burned 413,765 acres (1,674 km²)



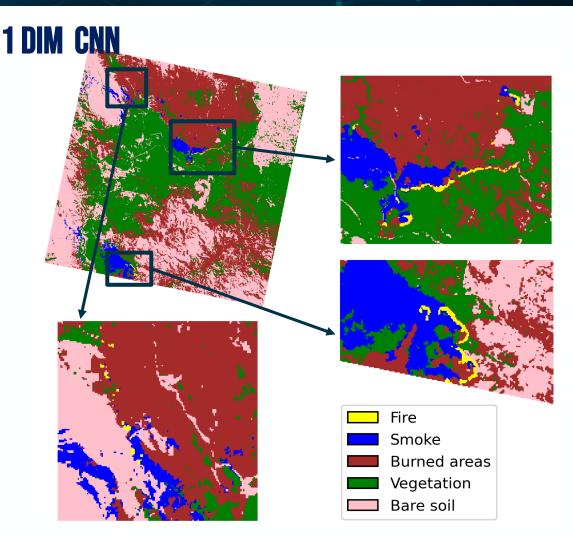


Bush fire - NSW (Australia) - Hyperspectral Fire index

Forest Fire Front

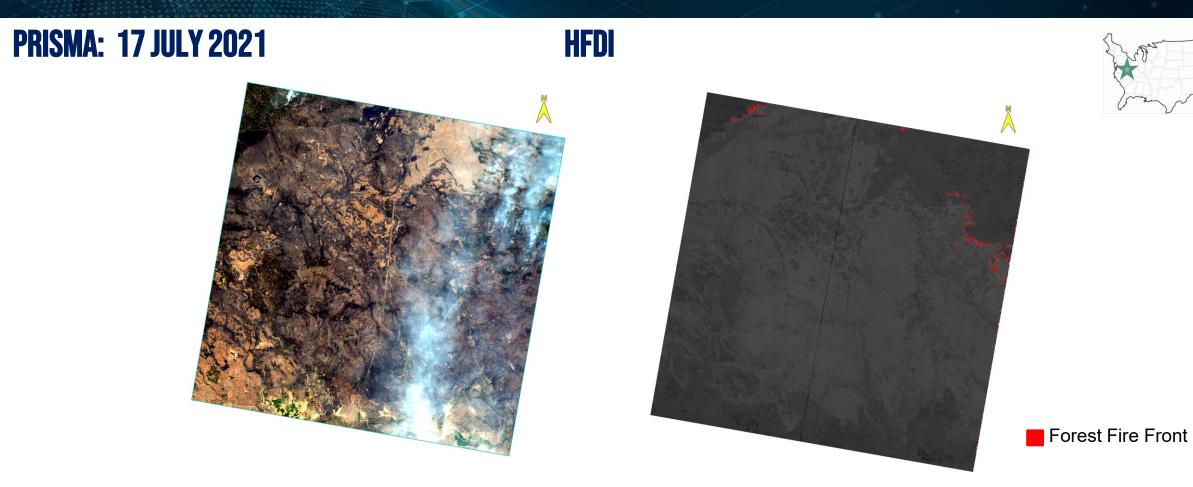
Data/Information generated by INGV, under an ASI License to Use; Original PRISMA Product - © ASI – (2021)

Bush fire - NSW (Australia) - Convolutional Neural Network classification


PRISMA: 27 DECEMBER 2019

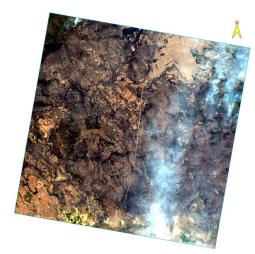
Precision, Recall, and F1 scores in the four identified area. The Australia, North-East dataset has been used for training, whereas the others are used as test.

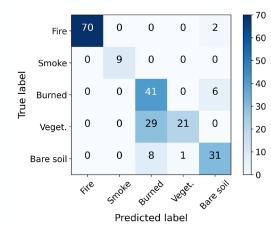
Wildfire Location	Precision	Recall	F1
Australia, North-East	0.98	0.98	0.98
Australia, South	0.98	0.98	0.98
Australia, North-West	1.00	0.95	0.97
Oregon, North-East	0.85	0.79	0.79


Data/Information generated by SIA-UniRoma1 under an ASI License to Use; Original PRISMA Product - © ASI – (2021)

Spiller, D. Amici S and Ansalone L. Submitted proceeding paper Whispers 2022

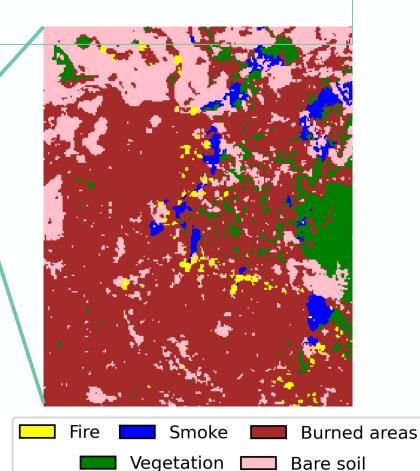
OREGON case study: - Hyperspectral Fire index


The threshold values are in the range expected by Dennison 2009 with -0.1 for likely detection and -0.178 for threshold ash-background.


Data/Information generated by INGV, under an ASI License to Use; Original PRISMA Product - © ASI - (2021)

OREGON Transfer learning - Australia Oregon confusion matrix

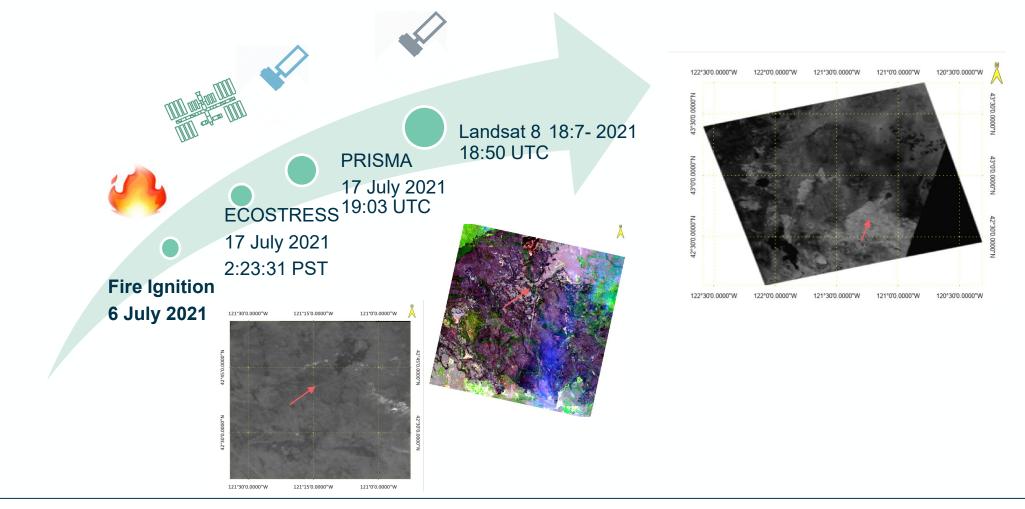
PRISMA: 17 JULY 2021



Precision, Rec	all, and F1 sco	res in the four	identified	
area. The Australia, North-East dataset has been used for training,				
whereas the others are used as test.				
Wildfire Location	Precision	Recall	F1	
Australia, North-East	0.98	0.98	0.98	

1 DIM, CNN

rustiana, rusti Last	0.70	0.70	0.70
Australia, South	0.98	0.98	0.98
Australia, North-West	1.00	0.95	0.97
Oregon, North-East	0.85	0.79	0.79

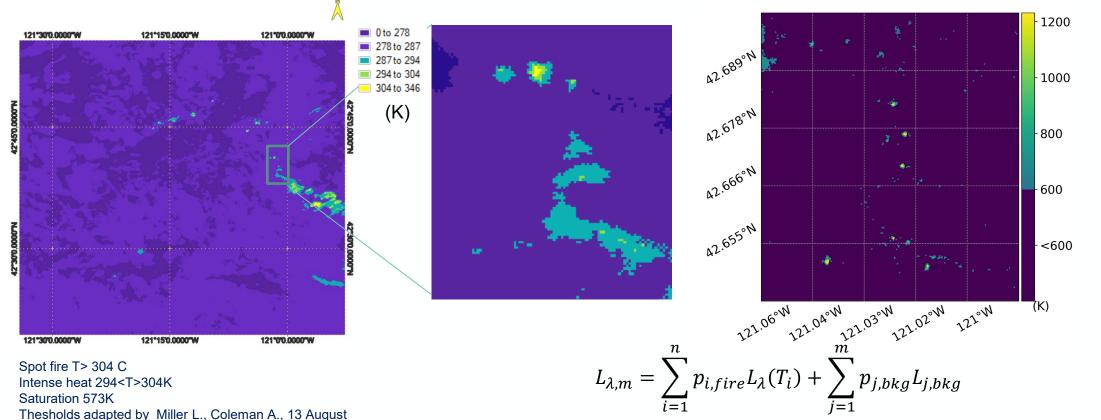


Data/Information generated by SIAUni ROma1 under an ASI License to Use; Original PRISMA Product - © ASI – (2021)

Satellite complementarity

10

PRISMA vs ECOSTRESS -Temperature maps

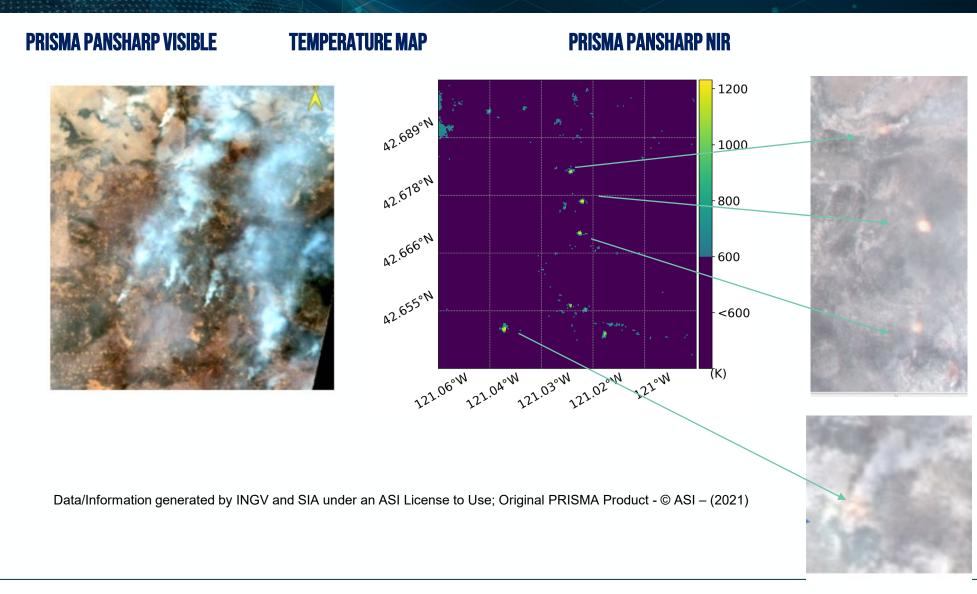


ECOSTRESS

2021, at ECOSTRESS

Data/Information generated by SIA-UniRoma1, under an ASI

License to Use; Original PRISMA Product - © ASI – (2021)



Temperature by using the PRISMA level 2B images (BOA radiance) and a linear mixture model (Waigl 2019). The pixel signal $L_{\lambda,m}$ is expressed as a weighted average of *n* sources $L_{\lambda}(T_i)$ (represented as black bodies) and *m* background signals $L_{j,bkg}$ (chosen as other pixels in the same image). The summation is weighted by means of the parameters *p*. A least square method is used to estimate the parameters p_i, p_j and the temperatures T_i :

PRISMA

Qualitative validation



- Characterization of a phenomena beyond the main PRISMA mission goals.
- Characterization of active fires in terms of fire front and temperature
- PRISMA derived front fire consistent with ECOSTRESS
- Temperature of hot spot consistent with ECOSTRESS

VIIRSS	PRISMA
350m	30m

Benefits

Sinergy with TIR data Sinergy with hyperspectral missions High resolution very detailed location of the front Temperature can be linked to the fire impact and used for FRP Potential operative application

Challenges

Coding processing time Background identification Having acquisition very near to PRISMA Validation measurements

Thanks for listening!

Acknowledgements

We thanks ECOSTRESS team for sharing the data to the community

P. Sacco and E. Lopinto for valuable support in planning very urgent acquisition

Project "Prodotti prototipali iperspettrali" funded by ASI and lead by M. Polandri and coordinated for the INGV prototypes by MF. Buongiorno, M. Musacchio

IGARSS 2022

17 July 2022 HD-7: Aiding active landscape fire detection from space with ASI PRISMA: unlocking the complementary value of hyperspectral PRISMA data

Get in touch

Stefania.amici@ingv.it

an Open Access Journal by MDPI