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Background and motivation

Non-photosynthetic vegetation (NPV) is defined as vegetation that cannot 
convert solar energy into chemical energy (Asner, 1998) and it is 
composed by plant litter, standing dead or dying vegetation (SDV) 
and crop residues (CR). 

SDV & CR play a strategic role in the frameworks of sustainable agriculture
(Hank, 2019) and more recently of carbon farming (Smith et al. 2020). 

This importance is overall connected to their role in the cycling of 
carbon, nutrients and water, and in particular in conservation of soil. 

Retention of CR on the fields provides 
- protection against erosion of wind and water (Arsenault & Bonn, 2005), 

controls temperature and moisture evaporation, 
- maintains high levels of soil organic carbon (Lal et al., 1999, Haddaway

et al. 2017), 
- reduces soil compaction due to agricultural machinery and improves 

the soil structure.
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Background and motivation

By means of mapping presence and abundance of NPV, remote sensing could 
contribute to monitor/control the implementation and rate of conservation practices in 
agriculture (European Commission, 2018), providing also information for eco-system 
services  NPV become a priority variable in the design of satellite missions 
(Hank, 2019, Berger, 2021; Hively et al., 2021).

PRISMA proved suitable for distinguishing NPV from green vegetation (GV) and bare 
soil (BS) and promising for quantification based on absorption peaks of ligno-
cellulose (Pepe et al. 2020)

To obtain accurate evaluation of NPV (presence and quantification) it is important the 
knowledge of land use and surface conditions changes as related to the timing of 
tillage or planting (Daughtry et al. 2005; Zheng et al. 2012; Berger et al. 2022)

ESA CHIME MRD (2021)

NPV spectral features from 
PRISMA (Pepe et al. 2021)

Map such surface conditions related to NPV is important:
• it is the first step before quantitively estimate NPV
• identification of dynamics are valuable information for monitoring conservation practices
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Study objective & test site 1/2

Objective: Mapping surface conditions related to NPV exploiting spectroscopic features from spaceborne 
hyperspectral data and machine learning algorithm.

Rationale: 1) use of physical based analysis of spectra according to target properties to define enhanced 
diagnostic features and 2) ML to define a mapping paradigm flexible and transferable in time and space
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Study objective & test site 2/2

• Bonifiche Ferraresi S.p.A. farm is located in the Po Plain (Emilia-Romagna; 44°53′N; 11°59′E)
• The estate is ~ 3800 ha wide with a diversified crop production and rotation from year to year
• The area is a CAL/VAL site of ASI-CNR PRISCAV project and it is regularly acquired by 

PRISMA background mission. Other research activities have been conducted in the 
framework of ESA CHIME-RCS study in 2020 and 2021 and AVIRIS-NG Europe 
Campaigns 
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Materials and method

EO data: PRISMA L2D products 
• 6 images per crop season from April to September for the 2020 – 2021 (12 in total)

• hyperspectral cube of i) 231 narrowbands from 400 to 2500 nm ~ 10 nm spectral resolution, ii) ground 
sampling distance (GSD) of 30 m

Ground truth and ancillary information:
• Observation on crop/field status (phenology, target conditions) @ PRISMA overpass

• Farm information on agricultural practices, types and dates (e.g. sowing, harvesting, soil preparation, etc.), 

Spectroscopic modelling to derive input features:
• Exponential Gaussian Optimization (EGO) modelling of 4 known diagnostic intervals (Δλ1 – Δλ4) 

to derive 4 spectral parameters (band center xc, width w, depth s and asymmetry k) 

• Creation of a reduced feature space of 16 input (4 regions x 4 parameters) for image classification 

Mapping approach:
• ML Decision Tree (R rpart package)  efficient and transparent to interpret decision rules

• Input EGO Spectroscopic features computed from random selection of PRISMA spectra from 
ground truth information at field level for BS, EV, GV, SDV, CR (24/04 and 21/06/21 image)

• Training 150 pixels sample per class (tot 750) 

• Testing  300 pixels sample per class (tot 1500)
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Results: descriptive statistics

Diagnostic features analysis
Δ𝜆𝜆1 (canopy pigments’ absorption) band 

depth (s) significantly diagnostic 
vegetation (GV and EV).

Δ𝜆𝜆2 (canopy water absorption) in green 
vegetation band center (xc) @ 1160 nm, 
largest band width (w), less skewed 
band asymmetry (k)

Δ𝜆𝜆3 (cellulose-lignin absorption peak) band 
depth (s) and width (w) show generally 
higher values for SDV and CR. BC center 
position (xc) is shifted.

Δ𝜆𝜆4 (clay minerals absorption) analysis does 
not provide evidences of any diagnostic 
features for the considered classes *’** 

*considered interval is quite narrow ; **known drop in radiance in this part of the SWIR PRISMA signal (Cogliati et al., 2021)
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Results: mapping accuracy

Decision Tree and accuracy

BS CR EV GV DVS
BS 269 3 6 0 0
CR 0 273 1 0 28
EV 11 2 277 0 2
GV 0 0 0 298 0

DVS 2 21 16 0 270
Sensitivity 0.9539 0.913 0.9233 1 0.9
Specificity 0.9925 0.9754 0.9873 1 0.9669
Overall 
Acc. 0.9378

K coeff. 0.9222
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Results: mapping generation 
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Results: information content analysis
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Conclusion

Test of a two-steps classification approach for mapping crop conditions as related to NPV and soil 
conservation practices from spaceborne imaging spectroscopy PRISMA data. 

1) EGO modelling applied to four diagnostic spectral intervals  hyperspectral space reduced features 
2) Decision Tree trained at pixel level decision rules for the classification –> BS, EV, GV, SDV, CR
DT is successfully (OA and K > 0.9) applied on a PRISMA hyperspectral image time series on the test site 

field condition maps at parcel level over the two crop seasons (2020 -2021)
Analysis of trajectories proved that classification results are consistent with independent data, and confirm 

that the approach is accurate for field condition mapping. 
Future work will consider the following tasks:
1) exploitation of spectral libraries regarding NPV fractions (Hively et al., 2021) to move ahead to a 

quantitative estimation of abundance (NPV-related, green vegetation and soil). 
2) Exploit RTM (PROSPECT-PRO; Feret et al., 2021) to simulate spectral signature at different CBC and in 

relation to changing plant/soil moisture content to assess detection limits and/or develop transferable 
solution (hybrid-approaches)

Pepe et al (2022) Mapping spatial distribution of crop residues using PRISMA satellite imaging spectroscopy. 
European Journal of Remote Sensing under revision

Pepe.m@irea.cnr.it
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Ongoing activities: CR abundance

Machine Learning approaches: full spectra vs 
spectroscopic features enhancement

• Data: USGS spectral library  916 samples with different 
abundaces of CR, GV and S (Hively et al., 2021) 

• Test 1: Input: full spectra information (excluding 
atmospheric absorption bands); MLRA: PLSR 

• Test 2: Input: 16 spectroscopic features (4 region x 4 
parameters); MLRA: Random Forest + 10-fold cross 
validation & 5 times iteration 

1650-1670 (lignin/starch/protein)

1360-1380 (water); 
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Ongoing activities: CR abundance

22 June 2022 - Spec_VegTraits-1: Quantifying priority vegetation traits 
from spaceborne imaging spectroscopy data

Pepe et al . Quantifying Crop Residue Cover by Spectroscopy Techniques 
Exploiting In-situ, Aerial and Simulated Spaceborne Hyperspectral Data for 
PRISMA Mapping Applications

ASI Contract n. 2022-5-U.O.

Development of algorithms for the estimation of functional parameters of terrestrial
vegetation from PRISMA data in the agro-forestry sector

P.I. Prof. Micol Rossini
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