

AEOLUS+Innovation 'Ocean sub-surface products and applications'

https://aeolus-aoc.noveltis.fr/

24/05/2022 NOV-FE-1086-SL-044 © NOVELTIS | Ce document est la propriété de NOVELTIS et ne peut être reproduit ou communiqué sans son autorisation.

150 900

Oualité

DR CERTIFICAT

developmen

- ADM-Aeolus launched in August 2018
- Initially dedicated to the monitoring of **wind profiles**
- ALADIN LiDAR instrument:
 - High-Spectral Resolution LiDAR: separates the contribution from Molecular (Rayleigh) and Particulate (Mie) backscattering
 - Backscatter and attenuation coefficients can be estimated without the need of ancillary data nor absolute calibration
 - > Screens the atmosphere profile in the UV (355 nm)
 - No measurements / few observations in the UV over Ocean
- Assessing the potentials of Aeolus observations to provide ocean colour products
 - > Provide, for the first time, optical ocean properties (b_{bp}) in the UV

- Derivation of **Ocean Color parameters** from Aeolus
 - > LiDAR-derived optical parameters
 - Particulate attenuated backscatter θ_p
 - Attenuation coefficient K_L
 - > Ocean optical parameters related to ocean optical properties
 - Particulate backscattering parameter b_{bp}(355 nm)
 - Diffuse attenuation coefficient K_d(355 nm)
 - > Biogeochemical parameters related to marine biogeochemical cycles
 - Particulate organic carbon POC
 - Phytoplankton carbon *C*_{phyto}
 - Coloured dissolved organic matter CDOM
- Focus on retrieval of **B**_p and **b**_{bp}(355 nm)

- Estimation approach for the LiDAR derived optical parameters β_P
 - > Basic of HSRL

$$S_P(z) = K_{Mie} \left[\frac{N_p E_0}{(nH+z)^2} \right] \beta_P \left[exp \left(-\int_0^z K_L(z') dz' \right) \right]^2 . (T_A)^2$$

$$S_M(z) = K_{Ray} \left[\frac{N_p E_0}{(nH+z)^2} \right] \beta_M \left[exp \left(-\int_0^z K_L(z') dz' \right) \right]^2 . (T_A)^2$$

> ADM-AEOLUS HSRL algorithm

Taking into account the cross-talk

$$S_{M}(z) = K_{Ray} \left[\frac{N_{p}E_{0}}{(nH+z)^{2}} \right] (C_{1}\beta_{M} + C_{2}\beta_{P}) \left[exp \left(-\int_{0}^{z} K_{L}(z')dz' \right) \right]^{2} . (T_{A})^{2}$$

$$S_{P}(z) = K_{Mie} \left[\frac{A}{(nH+z)^{2}} \right] (C_{3}\beta_{P} + C_{4}\beta_{M}) \left[exp \left(-\int_{0}^{z} K_{L}(z')dz' \right) \right]^{2} . (T_{A})^{2}$$

$$\beta_P = \beta_M \frac{\left(K_{Ray}C_1 - S_R K_{Mie} C_4\right)}{\left(S_R K_{Mie} C_3 - K_{Ray}C_2\right)} \quad \text{with} \frac{S_M(z)}{S_P(z)} = S_R$$

• C1, C2, C3 and C4 not available for users, and need to be computed for water spectra

- Taking into account the change of temperature of the M1 mirror introducing a calibration bias
 - The calibration coefficients K_{Ray} and K_{Mie} are not constant
 - Provided in L2A files

- Estimation approach for the LiDAR derived optical parameters β_P
 - > ADM-AEOLUS HSRL algorithm
 - Taking into account the altitude of the bins to get signal from the ocean

SNR of bin #24 is too low -> choice of bin #23

Ζ

Sea surface

22nd hin

- Estimation approach for the LiDAR derived optical parameters β_P
 - > ADM-AEOLUS HSRL algorithm
 - Taking into account the altitude of the bins to get signal from the ocean
 - Decomposition of the LiDAR signal in bin #23 (Li et al., 2007; Josset et al., 2010)

- S_{atm} is the contribution of the atmosphere in the 23rd bin
- The specular reflection of the LiDAR signal on the sea surface S_s is a function of the wind speed
- The whitecaps signal S_{wc} is a function of the effective reflectance and the surface wind
- S₀ is the ocean attenuated backscatter signal, i.e. the signal of interest

• Estimation approach to derive **ocean optical parameters** *bbp*

 $b_{bp} = 2\pi \chi(180^\circ).\beta_p$ (Boss and Pegau, 2001)

> $\chi(180^\circ)$, a conversion factor that depends on the size, type and composition of the particles

Validation of b_{bp} parameter

- Comparison of Aeolus derived *b*_{bp} against *in situ* measurements
 - > BGC-ARGO network
 - > Sea campaign in Cape Verde

- Aeolus derived b_{bp} vs. BGC-ARGO measured b_{bp}
 - > Profiles of *b_{bp}*(700), *E_d*(490), *CDOM*, etc.
 - > Processing of BGC-ARGO measurements:

$$b_{bp}(355) = b_{bp}(700) \left(\frac{700}{355}\right)^2$$

with γ = 0.78 (Boss et al., 2013)

- Collocations between Aeolus observations BGC ARGO measurements according to Bisson et al., 2020
 - Distance threshold: if SST < 15 °C, then distance < 15 km, otherwise, distance < 50 km
 - Temporal threshold: < 24 hours</p>
- > Also considered:
 - Data quality (for both BGC ARGO and Aeolus data)
 - Cloud cover (through scattering ratio in Aeolus L2A products)
- > **Period of interest**: June 28th 2019 to October 10th 2020

Validation of b_{bp} parameter

• Aeolus derived b_{bp} vs. BGC-ARGO measured b_{bp} 88 collocations Temporal distance between Aeolus and BGC Argo measurements >6h and < 12h</p> > 12h and < 24h < 6h

NOV-FE-1086-SL-044 © NOVELTIS | Ce document est la propriété de NOVELTIS et ne peut être reproduit ou communiqué sans son autorisation.

• Aeolus derived b_{bp} vs. BGC-ARGO measured b_{bp}

$$\beta_P = \beta_M \frac{(K_{Ray}C_1 - S_R K_{Mie} C_4)}{(S_R K_{Mie} C_3 - K_{Ray} C_2)}, with S_R = \frac{S_M}{S_P}$$

>
$$b_{bp} = 2\pi . \chi(180^\circ) . \beta_p$$

>
$$S_{atm}(23) = S(22)$$

> No cross-talk (
$$C_1 = C_3 = 1, C_2 = C_4 = 0$$
)

• Aeolus derived b_{bp} vs. BGC-ARGO measured b_{bp}

$$\beta_P = \beta_M \frac{(K_{Ray}C_1 - S_R K_{Mie} C_4)}{(S_R K_{Mie} C_3 - K_{Ray} C_2)}, with S_R = \frac{S_M}{S_F}$$

>
$$b_{bp} = 2\pi . \chi(180^\circ) . \beta_p$$

> $S_{atm}(23) = S(22) \frac{altitude_bin(23)}{height_bin(23)}$

> No cross-talk (
$$C_1 = C_3 = 1, C_2 = C_4 = 0$$
)

• Aeolus derived b_{bp} vs. BGC-ARGO measured b_{bp}

$$\beta_P = \beta_M \frac{(K_{Ray}C_1 - S_R K_{Mie} C_4)}{(S_R K_{Mie} C_3 - K_{Ray} C_2)}, with S_R = \frac{S_M}{S_F}$$

- > $b_{bp} = 2\pi . \chi(180^\circ) . \beta_p$
- > $S_{atm}(23) = S(22) \frac{altitude_bin(23)}{height_bin(23)}$
- > Cross-talk (for water spectra,

$$C_1 = 1.14, \ C_2 = 1.64, \ C_3 = 1.30, \ C_4 = 1.00)$$

> Strong impact of C_x

- Aeolus derived b_{bp} vs. Cape Verde measured b_{bp}
 - > In the frame of the ESA JATAC and French CADDIWA campaigns (September 8-22nd 2021)
 - > Aeolus overpasses (<100 km) on Sep. 10, 15, 17, 22 -> 9 colocations
 - > Particulate backscattering parameter **b**_{bp} up to 30 meters
 - > Diffuse attenuation coefficient K_d up to 30 meters

• Aeolus derived b_{bp} vs. Cape Verde measured b_{bp}

$$\beta_P = \beta_M \frac{(K_{Ray}C_1 - S_R K_{Mie} C_4)}{(S_R K_{Mie} C_3 - K_{Ray} C_2)}, with S_R = \frac{S_M}{S_P}$$

- $b_{bp} = 2\pi \chi (180^\circ) \beta_p$
- > $S_{atm}(23) = S(22) \frac{altitude_bin(23)}{height_bin(23)}$
- > Cross-talk (for water spectra,

$$C_1 = 1.14, \ C_2 = 1.64, \ C_3 = 1.30, \ C_4 = 1.00)$$

> Same trend as for BGC-ARGO

- First tentative to estimate **b**_{bp} in the UV from ALADIN LiDAR
 - > Need to perform **atmospheric correction** as the bin of interest is both in water and atmosphere
 - > Inclusion of **calibration** and **crosstalk** coefficients C_x for water
- High error on *b*_{bp} retrievals
 - > Negative values when including C_x coefficients
 - > Impacted by the way to correct the atmosphere
 - > No relevant to derive biogeochemical parameters at this stage
- Need to better understand the **ALADIN signal** (threshold on the SNR, binning on more observations)
- **Sensitivity study** on the C_x values
- Need to understand the content of the ground signal → may be useful to correct the contribution of the atmosphere
- Need to consider the surface as a function of the **wind speed**

- **ESA** for funding the project through the AEOLUS+ Innovation program
- **CNES** for funding the Cape Verde sea campaign through the TOSCA program
- Alain Dabas and his team for providing the C_x values for water and for their valuable comments on this work and the cloud flag
- The Ocean Science Mindelo Center (OSCM) for the help to organize the sea campaign and the use of their facilities: Pericles Silva, Ivanice Monteiro and Elizandro Rodrigues
- The captain and the fishermen of the Gamboa ship

Thank you for your attention!

https://aeolus-aoc.noveltis.fr/

- Estimation approach for the LiDAR derived optical parameters
 - > Basic of HSRL

$$S_M(z) = K_{Ray} \left[\frac{N_p E_0}{(nH+z)^2} \right] \beta_M \left[exp \left(-\int_0^z K_L(z') dz' \right) \right]^2 . (T_A)^2$$
$$S_P(z) = K_{Mie} \left[\frac{N_p E_0}{(nH+z)^2} \right] \beta_P \left[exp \left(-\int_0^z K_L(z') dz' \right) \right]^2 . (T_A)^2$$

 β_M is almost constant in the upperocean and is equal to 0.001301 at 355 nm (Zhang et al., 2009)

- > Signal the Mie and Rayleigh channels would measure if the HSRL was perfect, i.e. no cross-talk between the Rayleigh and Mie channels
- > ADM-AEOLUS HSRL algorithm (taking into account cross-talk)

$$S_{M}(z) = K_{Ray} \left[\frac{N_{p}E_{0}}{(nH+z)^{2}} \right] (C_{1}\beta_{M} + C_{2}\beta_{P}) \left[exp \left(-\int_{0}^{z} K_{L}(z')dz' \right) \right]^{2} (T_{A})^{2}$$
$$S_{P}(z) = K_{Mie} \left[\frac{A}{(nH+z)^{2}} \right] (C_{3}\beta_{P} + C_{4}\beta_{M}) \left[exp \left(-\int_{0}^{z} K_{L}(z')dz' \right) \right]^{2} (T_{A})^{2}$$

$$\beta_P = \beta_M \frac{\left(K_{Ray}C_1 - S_R K_{Mie} C_4\right)}{\left(S_R K_{Mie} C_3 - K_{Ray} C_2\right)} \quad \text{with} \frac{S_M(z)}{S_P(z)} = S_R$$

C₁, C₂, C₃ and C₄ not available for users, and need to be computed for water spectra

- Estimation approach for the LiDAR derived optical parameters
 - > ADM-AEOLUS HSRL algorithm
 - Taking into account cross-talk

$$S_{M}(z) = K_{Ray} \left[\frac{N_{p}E_{0}}{(nH+z)^{2}} \right] (C_{1}\beta_{M} + C_{2}\beta_{P}) \left[exp \left(-\int_{0}^{z} K_{L}(z')dz' \right) \right]^{2} (T_{A})^{2}$$
$$S_{P}(z) = K_{Mie} \left[\frac{A}{(nH+z)^{2}} \right] (C_{3}\beta_{P} + C_{4}\beta_{M}) \left[exp \left(-\int_{0}^{z} K_{L}(z')dz' \right) \right]^{2} (T_{A})^{2}$$

$$\beta_P = \beta_M \frac{\left(K_{Ray}C_1 - S_R K_{Mie} C_4\right)}{\left(S_R K_{Mie} C_3 - K_{Ray} C_2\right)} \quad \text{with} \frac{S_M(z)}{S_P(z)} = S_R$$

- Taking into account the change of temperature of the M1 mirror introducing a calibration bias
 - The calibration constants K_{Ray} and K_{Mie} are not constants
 - Provided in L2A files

$$K_L(z) = -\frac{1}{2}\frac{d}{dz}\ln\left((nH+z)^2.S_M(z)\right)$$

- Estimation approach for the LiDAR derived optical parameters
 - > ADM-AEOLUS HSRL algorithm

SNR of bin #24 may be too low -> choice of bin #23

- Estimation approach for the LiDAR derived optical parameters
 - > ADM-AEOLUS HSRL algorithm
 - Taking into account cross-talk
 - Taking in to account the change of temperature of the M1 mirror introducing a calibration bias
 - Taking into account the altitude of the bins to get signal from the ocean
 - Consider atmospheric correction and wind speed
 - Taking into account the clouds
 - First assumption: if L1B observation is available, so the scene is free of clouds
 - However, thin clouds may still impact the estimation of LiDAR derived optical parameters: cloud filtering
 - No cloud information in AEOLUS L1B files...
 - LiDAR scattering ratio from L2A or SNR

- Estimation approach to derive ocean optical parameters
 - > Particulate backscattering parameter b_{bp}
 - $b_{bp} = 2\pi \chi (180^\circ) \beta_p$ (Boss and Pegau, 2001)
 - $\chi(180^{\circ})$, a conversion factor that depends on the size, type and composition of the particles

(Hair et al. 2016)

- > Diffuse attenuation coefficient K_L
 - $K_d(355) = K_L(355)$
 - Lidar attenuation coefficient, $K_L(355)$, is a very good approximation of the diffuse attenuation coefficient, $K_d(355)$

- Estimation approach to derive **biogeochemical parameters**
 - > Particulate Organic Carbon (*POC*)

 $POC = 53606.7 * b_{bp}(555) + 2.468$

(Stramski et al., 2008)

with $b_{bp}(\lambda) = b_{bp}(355) \left(\frac{355}{\lambda}\right)^{\gamma}$ $\gamma = 0.78$ (Boss et al., 2013), variable value could be investigated (Bisson et al., 2020).

> Phytoplankton Carbon (C_{phyto})

 $C_{phyto} = 13,128 \times (b_{bp}(470) + 0.59)$ (Graff et al., 2015)

> Coloured dissolved organic matter (*CDOM*)

 $K_{d(355)} = K_{w(355)} + K_{bio}(355)$ $K_{bio}(355) \sim CDOM$ (Organelli and Claustre, 2019) $K_{w(355)} = 0,0453 m^{-1}$ (Austin and Petzold, 1986)

- Comparison of Aeolus derived b_{bp} against *in situ* measurements
 - > BGC-ARGO network
 - Profiles of b_{bp}(700), E_d(490), CDOM, etc.
 - Processing of BGC-ARGO measurements: method based on Lacour et al., 2020
 - *b_{bp}*(355) computation

$$b_{bp}(355) = b_{bp}(700) \left(\frac{700}{355}\right)^{\gamma} \text{ with } \gamma = 0.78 \text{ (Boss et al., 2013)}$$
$$b_{bbp}^{float}(355) = \frac{\sum_{z} \exp(-2K_d(355)z) \ b_{bp}(355,z)}{\sum_{z} \exp(-2K_d(355)z)}$$

• K_d (490) computed as the mean slope over the first 50 m of minus the logarithm of a polynomial fit of the measured E_d (490)

$$K_d(355) = 2.0968 \times (K_d(490) - 0.0224) + 0.0453$$
 (Austin and Petzold, 1986)