Simulations of low-low satellite-to-satellite tracking constellations for the ESA/NASA MAGIC satellite gravity mission

<u>Betty Heller</u>*, Petro Abrykosov, Roland Pail

Technical University of Munich, Germany

* betty.heller@tum.de

Mass-change And Geosciences International Constellation (MAGIC)

Aim of the ESA Science Support Study for MAGIC:

Evaluating the performance of various satellite gravity mission designs

*Massotti et al. (2021)

What is the impact of the inclination of the second satellite pair on the retrieval errors of a double-pair mission? Two **double-pair scenarios** with similar altitude (31-day simulation incl. full signal + noise):

Two **double-pair scenarios** with similar altitude (31-day simulation incl. full signal + noise):

ТЛП

EWH grid differences to true HIS signal:

RMS of errors along parallels:

Area-weighted mean of rms errors in cm:

	sout	global		
	all $oldsymbol{arphi}$	$ arphi < 65^{\circ}$	$ arphi > 70^\circ$	all $oldsymbol{arphi}$
5d_Ma (65°)	12.56	9.76	30.94	14.81
5d_Mb (70°)	17.79	18.25	14.44	18.71
	65° case 29% better	65° case 47% better	70° case 53% better	65° case 21% better

Impact of the inclination of the second pair – VADER-filtered results

After VADER filtering, $x_{\alpha} = (N + \alpha M)^{-1} N x = W_{\alpha} x \dots$

RMS of errors along parallels:

Area-weighted mean of rms errors in cm:

ТШ

Impact of a smaller inclination i_2 of the second pair:

Unfiltered solutions:

- larger east-west component of observations
- \Rightarrow reduction of sectorial noise for $|\varphi| < i_2$
- larger polar gaps of inclined pair
- \Rightarrow stronger noise over poles
- \Rightarrow larger unobserved region near the poles as stand-alone mission

VADER-filtered solutions:

- impact of i_2 smaller
- but: need weaker filter if i_2 is smaller

How do the orbits of polar and inclined pair need to be designed for short-term (3-day) gravity retrieval? 3d_H orbits: both polar and inclined pair have a

- 3-day subcycle
- with a common longitudinal drift rate

 $-3^{\circ}/3$ days

12

Subcycles of satellite orbits - test scenarios

3d_H

2. Orbit design aspects for 3-day gravity retrieval

2. **Orbit design aspects for 3-day gravity retrieval**

Impact of orbit subcycles on short-term gravity retrieval:

Impact of 3-day subcycle of **polar pair**?

Aspect 1:

 missing 3-day subcycle of polar pair acceptable, but resolution of smallscale features at low latitudes is affected

if polar pair orbit is uncontrolled, orbit control for the inclined pair to maintain the groundtrack subcycles is crucial for the homogeneous quality of short-term solutions

⇒ Match between subcycle length and retrieval period affects short-term solutions!

Summary

1. Impact of the inclination of the second pair

Smaller inclination i_2 of the second pair

 \Rightarrow reduction of sectorial noise for $|\varphi| < i_2$

 \Rightarrow increase of noise over poles

Trade-off between improvement at low latitudes and increasing polar gap

2. Orbit design aspects for 3-day gravity retrieval

Non-homogeneous ground track pattern...

- ... of the polar pair
- \Rightarrow increased striping for low latitudes
- ... of the inclined pair
- \Rightarrow severe degradation over whole spectral range

For short-term solutions, match between orbit subcycles and retreival period should be considered • Orbit specifications:

Massotti, L.; Siemes, C.; March, G.; Haagmans, R.; Silvestrin, P. Next Generation Gravity Mission Elements of the Mass Change and Geoscience International Constellation: From Orbit Selection to Instrument and Mission Design. Remote Sens. 2021, 13, 3935. https://doi.org/10.3390/rs13193935

• MAGIC Mission Requirements Document:

Next Generation Gravity Mission as a Mass change And Geosciences International Constellation (MAGIC). A joint ESA/NASA double-pair mission based on NASA's MCDO and ESA's NGGM studies. Mission Requirements Document. ESA, Earth and Mission Science Division.

Appendix

Table 3. Candidate orbit sets for inclined and polar pairs recommended for further investigation. The ID shows the number of subcycle days for which the set is optimized as a first step and additional information about the altitudes: mid (M) and high (H).

ID	Sats 1 (IP)		Sats 2 (PP)		h _{l,1} (-)	h _{l,2} (-)	$\Delta \lambda_{shift,1}$ (deg)	$\Delta \lambda_{shift,2}$ (deg)	Subcycle (days)
	Alt. (km)	Incl. (deg)	Alt. (km)	Incl. (deg)					
3d_M	409	70	440	89	1.368	1.383	2.308	2.384	2, 3, 8, 11, 30
3d_H	432	70	463	89	1.451	1.449	-3.076	-3.067	3, 7, 31
5d_Ma	396	65	434	89	1.397	1.383	-1.499	-1.458	2, 3, 5, 13, 18, 31
5d_Mb	397	70	425	87	1.168	1.167	0.736	0.733	2, 5, 27, 32
5d_H	465	75	488	89	1.185	1.190	0.762	0.781	4, 5, 29
7d_M	389	70	417	87	1.238	1.253	0.743	0.786	2, 7, 30
7d_H	432	70	463	89	1.218	1.226	0.672	0.692	3, 7, 31

Massotti et al. (2021)

Post-processing of the retrieved fields

• VADER filtering (time-variable decorrelation, Horvath et al (2018)):

$$x_{\alpha} = (N + \alpha M)^{-1} N x = W_{\alpha} x$$

- x_{α} : vector of filtered SH coefficients
- x: vector of unfiltered SH coefficients
- **N**: NEQ-Matrix $(A^T P A)$ (= inverse of error VCV)
- *M*: inverse of signal variance matrix (computed from monthly HIS signal)
- α : scaling factor (determined such that RMS of global EWH errors is minimized)
- W_{α} : filter matrix

Impact of VADER filtering:

EWH RMS values along parallels:

- errors reduced and less latitude-dependent
- difference 5d_Ma vs. 5d_Mb reduced
- impact of filtering larger in areas of larger errors

Errors(filtered sol.) / errors(unfiltered sol.):

• improvement largest for coefficients of larger errors

Subcycles of satellite orbits - test scenarios

- double-pair low-low satellite-to-satellite constellations
 - polar pair: 89° inclination
 - inclined pair: 70° inclination
- numerical closed-loop simulations including
 - AO model errors
 - ocean tide model errors
 - HIS signal
 - orbit, ACC, LRI sensor noise
- ACC noise assumption:
 - polar pair: GRACE-type noise (~ 10^{-10} m/s²/ \sqrt{Hz})
 - inclined pair: NGGM-type noise (~ 10^{-11} m/s²/ \sqrt{Hz})
- 5 subsequent d/o 120 **3-day solutions**

ID	Sats	1 (IP)	Sats 2	2 (PP)	<i>h</i> _{<i>l</i>1} [-]	h _{l2} [-]	Δ(Lon) ₁ [deg]	Δ(Lon) ₂ [deg]	Sub-cycles [days]	Retrieval period [days]	MRD
	Alt. [km]	Incl. [deg]	Alt. [km]	Incl. [deg]							Requirements
Coordinated											
3d_H	432	70	463	89	1.451	1.449	-3.076	-3.067	3, 7, 31	3	MRD-040 – Fulfilled MRD-050 – Fulfilled MRD-060 – Fulfilled
Uncoordinated											
U3d5d_H	432	70	492	89	1.451 (3d)	1.172 (5d)	-3.076 (3d)	-0.790 (5d)	IP: 3, 31 PP: 5, 31	3	MRD-040 – Violated MRD-050 – Violated MRD-060 – Violated
U5d_H	460	70	492	89	1.061 (5d)	1.172 (5d)	-0.284 (5d)	-0.790 (5d)	IP: 5 PP: 5, 31	3	MRD-040 – Violated MRD-050 – Violated MRD-060 – Violated
U3d_H	402	65	463	89	1.382	1.449	2.380	-3.067	IP: 3, 29-30 PP: 3, 7, 31	3	MRD-040 – Fulfilled MRD-050 – Violated MRD-060 – Violated

Degree amplitudes (not corrected for altitude):

Degree amplitudes (corrected for altitude):

Altitude correction relative to 3d_H (here: in blue)

- Apply degree-dependent factor $\left(\frac{r_{ref}}{r}\right)^{n+2}$ to the SH coefficients
- r: mean radius of polar and inclined pair of the considered scenario
- *r_{ref}*: mean radius of polar and inclined pair of scenario 3d_H
- Background: measurement quantity is range rate, related to gravity accelerations, proportional to $\left(\frac{1}{r}\right)^{n+2}$
- Effect: scenarios U3d_H, 3d_H, U3d5d_H move together for n<40

Aspect 3: Impact of **common drift rate** of polar and inclined pair

Aspect 3: Impact of **common drift rate** of polar and inclined pair

3d H (common drift rate) U3d H (uncommon drift rate)

