

Capabilities and limits of Multi-satellite constellations and formations for temporal gravity field retrieval

May 24, 2022

Nikolas Pfaffenzeller, Roland Pail (Technical University of Munich)

Living Planet Symposium 2022, Bonn

- Science and User Needs not fulfilled with current gravity missions \rightarrow new concepts beyond MAGIC for medium-term realization
- Project study "CubeGrav": investigate mission concepts with CubeSats, including analysis on
 - o increase of spatio-temporal resolution
 - reduction of temporal aliasing
 - o system design
 - \circ reduced costs for dedicated mission

Simulation Environment

- □ Full Scale Numerical Closed Loop Simulations
- □ Satellite pairs (low-low tracking concept)
- □ Key payload:
 - o Accelerometer:
 - Electrostatic Micro STAR (MAGIC) → state-of-the art NGGM (reference)
 - Optomechanical sensor (Hines et al. 2020) → miniaturized footprint: 48 mm x 92 mm, mass: 26 g, power: ca. 1 W
 - Inter-Satellite Ranging:
 - Laser (MAGIC) → state-of-the art NGGM
 - No miniaturized sensor available with < 1 µm
 → Assumption of future instrument with GRACE-FO K-Band Microwave Ranging System accuracy (Kornfeld et al. 2019)

Instrument Performance

instrument performances

□ Higher performance of the state-of-the art instruments

Investigation period: 1 month Inter-satellite distance: ~220 km

Retrieved Signal	Co-estimation of short periodic gravity fields		AO error	OT error
	approach	length		
HIS	-	-	yes	yes
AOHIS	"Wiese" d/o 30 (Wiese et al. 2011)	1 day, 12 h, 6h	-	yes

Orbits	Altitude [km]	Inclination [°]
Polar	463	89
Inclined	432	70

Orbital Parameters taken from MAGIC orbit set 3d_H (Massotti et al. 2021)

Orbital Setup

Simulation Results – monthly gravity field retrieval HIS + AO error + OT error, 01.01.2002 - 31.01.2002 10^{3} 1 polar pair optomechanical acc + MWI --· electrostatic acc + laser 10² 1 polar pair + 1 inclined pair SH degree RMS in cm EWH 10¹ 4 polar pairs on 1 orbit plane - Chain 4 polar pairs on 1 orbit plane + 4 inclined pairs on 1 orbit plane - Chain 1 polar pair 10⁰ --1 polar pair + 1 inclined pair --HIS 10⁻¹ 10⁻² 20 40 60 80 100 120 0 SH degree

- □ Similar performance with different instruments → temporal aliasing dominating error contributor
- Satellite chains increase only redundancy due to larger number of observations, but no better spatial-temporal resolution

- Increasing the number of polar satellite pairs improves performance and simultaneously decreases the added value from additional observations (for monthly retrieval!)
- Performance of 18 polar pairs similar to 1 Bender double-pair

Simulation Results – monthly gravity field retrieval

Additional inclined satellite pairs improve the overall gravity solution

Spatial distribution is of minor relevance for monthly field retrieval

Simulation Results – Wiese approach – 1 daily co-estimation

01.01.2002 - 31.01.2002, 1 daily gravity fields, wiese do 30 optomechancial acc + MWI, AOHIS + error ocean tides

- □ All scenarios are able to resolve 1-daily gravity fields
- Observations from inclined orbits and simultaneously a higher amount of satellites pairs perform the best

12:00 pm - 12:00 am on 01.01.2002, 12 hours gravity fields, wiese do 30 optomechanical acc + MWI, AOHIS + error ocean tides

Configurations with limited spatial coverage are not able to co-estimate half-daily gravity fields and degrade the overall monthly solution

Simulation Results – Wiese approach – 12 h co-estimation

Global estimated halfdaily Gravity Field Residuals from Simulations AOHIS compared to Signal Equivalent in Water Height (EWH) on 01.01.2002 12:00 h to 24:00 h

- Configurations with limited spatial coverage are not able to retrieve the 12 h AOHIS signal
- Reduction of striping pattern with inclinced observations

Ground track coverage after 6 hours:

Conclusions

Added value

- Miniaturized optomechanical accelerometer suitable for a potential CubeSat gravity mission, but no candidate available yet for inter-satellite ranging with < 1 µm
- □ Co-estimation of short-periodic (24 / 12 / 6 hours) stand-alone gravity fields
- □ Priorities (application-dependent):
 - Number of inter-satellite links
 - Number of satellite pairs
 - Spatial distribution of the satellites
 - Observations from different inclined orbits
- □ Further investigations:
 - Optimization of ground track coverage with adapted orbits (sub-cycle)
 - What are potential candidates for ranging instruments?
 → Any ideas and suggestions are highly appreciated

- <u>https://www.asi.it/wp-content/uploads/2021/03/MAGIC_NGGM_MCDO_MRD_v1_0-signed2.pdf</u> (MRD MAGIC)
- Hines, Adam; Richardson, Logan; Wisniewski, Hayden; Guzman, Felipe (2020): Optomechanical Inertial Sensors. In: *Appl. Opt.* 59 (22), G167. DOI: 10.1364/AO.393061.
- Kornfeld, Richard P.; Arnold, Bradford W.; Gross, Michael A.; Dahya, Neil T.; Klipstein, William M.; Gath, Peter F.; Bettadpur, Srinivas (2019): GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission. In: *Journal of Spacecraft and Rockets* 56 (3), S. 931–951. DOI: 10.2514/1.A34326.
- Massotti, Luca; Siemes, Christian; March, Günther; Haagmans, Roger; Silvestrin, Pierluigi (2021): Next Generation Gravity Mission Elements of the Mass Change and Geoscience International Constellation: From Orbit Selection to Instrument and Mission Design. In: *Remote Sensing* 13 (19), S. 3935. DOI: 10.3390/rs13193935.

References

Wiese, D. & Visser, Pieter & Nerem, Robert. (2011). Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors. Advances in Space Research - ADV SPACE RES. 48. 1094-1107. 10.1016/j.asr.2011.05.027.