Review of MARVEL pre-Phase-A

Jean-Michel Lemoine¹, Mioara Mandea¹, Louise Lopes¹, Benoit Meyssignac¹, Alejandro Blazquez¹, Georges Balmino¹, Vincent Costes¹, Sean Bruinsma¹, Etienne Samain², Stéphane Bourgogne³

¹ CNES ; ² SigmaWorks ; ³ Stellar Space Studies

· · · · cnes · · ·

THE MARVEL TEAM

Mioara Mandea (CNES) Solid Earth Program Manager

Louise Lopes (CNES) Pre-Phase-A leader

Benoit Meyssignac (CNES/LEGOS)

Alejandro Blazquez (CNES/LEGOS) Scientific advisers

Jean-Michel Lemoine (CNES/GET)

Etienne Samain (SigmaWorks) Vince Instrument experts

Vincent Costes (CNES) Stéphane Bourgogne (Stellar Space Studies) xperts Numerical Simulations expert

Georges Balmino (CNES Emeritus) Member of the science advisory group

Context

The laser ranging instrument

The numerical simulations of scientific performance

Conclusion

Context

- The MARVEL mission proposal for an improved observation of the time variable gravity field was submitted to the 2019 CNES Scientific Prospective Seminar and was accepted in September 2019
- > The pre-Phase-A study started in January 2020 and ended in February 2022
- The principle of the MARVEL concept is a pendulum configuration with 2 (or more) low flying polar satellites
- In pendulum configuration, the 2 satellites are on two similar polar orbital planes, with a slight offset in ascending node and mean anomaly
- The measurements done between the satellites are therefore oriented alternatively to the right and to the left of the orbital track, up to +/- 45°
- After a few days, the determination of the gravity field from those measurements becomes almost isotropic

* Context

The key to improving the gravity field observation is improving the **geometry** of the observations \geq **FUTURES CONCEPTS (INCLINED MEASUREMENTS)**

CURRENT CONCEPT (IN-LINE POLAR PAIRS)

GRACE | Error | Degree 2 to 60 | 200601 GRACE-A | 3h 20% 0.1mc/s 3mm 3e-10m/s2 0E 31K 31X GRACE-B | 3h 20% 0.1mc/s 3mm 3e-10m/s2 0E 31K 31X min - 72.50 cm / max 79.47 cm / rms 14.52 cm / ocn 14.36 cm / ctn 14.78 cm

15

20 25 30

-30 -25 -20 -15 -10 -5 0 5 10

Equivalent Water Heights (cm)

GRACE-FO

 σ SST = 2.5^e-9 m/s

2002 2004 2006 2008 2010 2012 2014 2016 2018

0.10 0.15 0.20 Spherical harmonics amplitude (cm)

MARVEL pre-Phase-A has taken place in a context where next generation gravity missions are under design among many actors

MASS CHANGE

Continuity of GRACE & GRACE FO

NGGM/MAGIC

GRACE-I

Continuity

Innovation

THE LASER RANGING INSTRUMENT

The laser ranging instrument

SPECIFICATIONS:

- Average inter-satellite distance ~ 200 km
- > Satellite body in fixed attitude law (\rightarrow the laser beam has to be oriented onboarad the satellite)
- ➢ Instrument-induced dynamical perturbations on the spacecraft < 10⁻¹¹ m/s²
- Maximum angle between line-of-sight and satellite reference frames : +/- 45°
- Instrument accommodation @ maximum 1.5 m from satellite Center of Mass
- > Ranging accuracy: better than $1 \mu m @5s$ in all circumstances

TECHNOLOGICAL SOLUTION:

- > Chronometric (i.e. not interferometric) laser link, using proven telecom components
- Line-of-sight angular measurement, for Center-of-Phase/Center-of-Mass correction @ better than 1 µrad @5s

***** Technical aspects

Stability curve, expressed in relative stability (left) and ranging noise (right)

Integrated RMS noise, in distance and velocity, for 1, 5 and 10 s integration time

RMS					
Ranging D		Velocity V			
	σD RMS	σV RMS			
	μm	μm/s			
@1s	1.19	1.24			
@ 5 s	1.14	0.26			
@ 10 s	1.11	0.13			

Mass, consumption and TRL, of the emitter/receiver (left) and reflector (right)

Mass = 13 kg Power = 55 W

Sub-system	TRL	Heritage
Erbium Laser amplifier	4-5	CW 1,5µm amplifier
Telecom Transceiver	9	Teleo
Event timer	9	Time Transfer by laser Link T2L2
Femto metrology	4	R&T Program : Metrology bread bord
		Model
Ultra stable oscillator	9	DORIS Navigation system

Mass = 8 kg Power = 14 W

Sub-system	TRL	Heritage
Corner cube	9	
Wide field µrad sensor	9	Telescope and algorithm, CNES Patent for
		the sensor optimization
Ultra stable oscillator	9	DORIS Navigation system

THE NUMERICAL SIMULATIONS

Living Planet Symposium 2022

- Most simulations were performed in the "CNES simulation environment" but the latest ones were done in the "ESA Earth System Model" environment for NGGM, in cooperation with GFZ
- The gravity field recovery performances of many different configurations were studied: classic "GRACE-type" single pair, double pair ("Bender"), two-satellite pendulum and three-satellite pendulum (i.e. a "GRACE-type" pair + third pendulum satellite). In each case we explored different altitudes, different inter-satellite separations, etc.
- The main outcome is that Bender and Pendulum achieve comparable performance at the monthly time scale and that they both provide a 6 to 8-fold improvement over current GRACEtype missions
- What was not considered in the simulations, but does have an impact on the results, is the fact that the Bender configuration allows a better time sampling of the gravity field because of its double pair, than the simple "2 satellite" pendulum

11

Unconstrained results

for the three mission types (pendulum, bender and grace-like)

Equivalent Water Heights - RMS Over Global Grid

- CNES GRACE+PENDULUM [H=(490,490) km, D=(200,200) km, α=(00,45)°, KBR=(LRI,Nominal)]

Cumulated error from degree from 3 to 90

Root mean square (rms) over the global grid Top panel: degrees 2 to 40 Bottom panel: degrees 2 to 60

Equivalent Water Heights - RMS Over Global Grid

Comparison to NASA and ESA thresholds and targets CRES GRES

CONCLUSIONS

Living Planet Symposium 2022

Plans for future missions, with inclined measurements, show a very clear improvement in scientific results compared to current polar missions (GRACE/GRACE-FO)

> MARVEL pre-phase-A has proven the interest of the pendulum concept

- > Chronometric laser ranging instrument \rightarrow for ~200 km distance:
- range better than 1 µmeter @5s,
- angle better than 1 µrad @5s,
- lateral scan up to +/- 45°
- based on several innovative concepts using proven optical telecom subsystems
- precise, cheap, light and low power instrument
- In the future, it can in particular be envisaged as the ranging instrument of a constellation of 3 or more LEO satellites performing one-to-one pendulum measurements and covering in a single pass a swath of a few hundred kilometres at the equator with a high temporal repetitivity

THANK YOU for your attention

Living Planet Symposium 2022