



# living planet BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE









A new CryoSat-2 regional product for ocean applications: the Cryo-TEMPO Coastal Ocean Thematic Product

F. Nencioli<sup>1</sup>, S. Dinardo<sup>1</sup>, T Zilio<sup>1</sup>, J.-A. Deguze<sup>1</sup>, A Sanchez Roman<sup>2</sup>, A. Pascual<sup>2</sup>, S. Labroue<sup>1</sup> and J. Bouffard<sup>3</sup>

<sup>1</sup> Collecte Localisation Satellites <sup>2</sup> IMEDEA

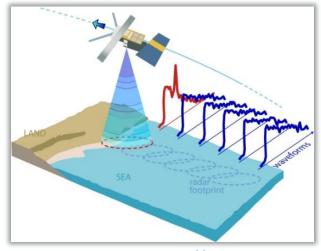
<sup>3</sup> European Space Agency

24/05/2022

ESA UNCLASSIFIED – For ESA Official Use Only



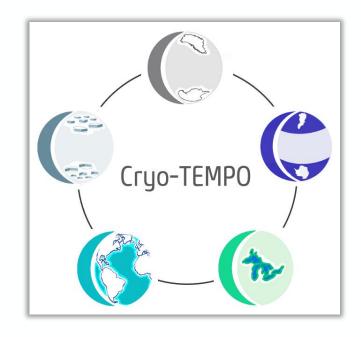
# CryoSat-2 achievements in the Coastal Ocean




Although initially not a main objective of the mission CryoSat-2 design offered **new capabilities for ocean observations** 

- Precursor of SAR mode processing over the ocean
   Higher resolution and smaller footprint than traditional altimeters
- Improvements over coastal areas
  - a. Better data coverage (reduced impact of land contamination)
  - b. Higher precision (Lower SNR)
  - c. Shorter spatial scale processes (<100 km)
- CryoSat-2 observations remain underutilized in oceanography
   Definition of a regional coastal ocean product
   (robust but simplified product to expand the user community)




from https://earth.esa.int



from https://sentinel.esa.int

# The Cryo-TEMPO project





#### Overarching goal

Develop agile, robust, state-of-the-art CryoSat-2 products dedicated to five Thematic Areas

- Land Ice
- Sea Ice
- Polar Ocean
- Coastal Ocean
- **Inland Waters**

15 Institutions across Europe involved in the consortium















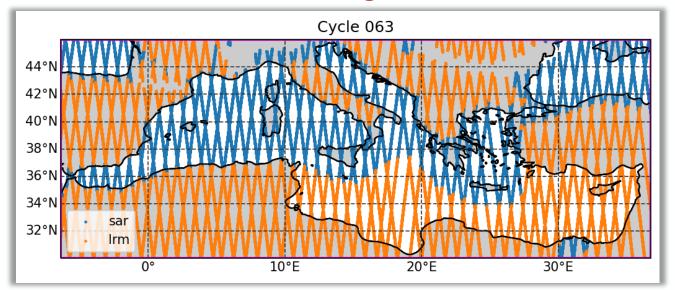








See also **poster 71023**:


Cryo-TEMPO: A new era of CryoSat-2 Thematic Products over Ice, Ocean and Inland Water McMillan et al.



# The Cryo-TEMPO Coastal Ocean TDP



# **Area of focus: Mediterranean Region**



- ☐ Created from L1B and L2
- ☐ 20 Hz product
- ☐ GOP baseline-C product

#### **Space**

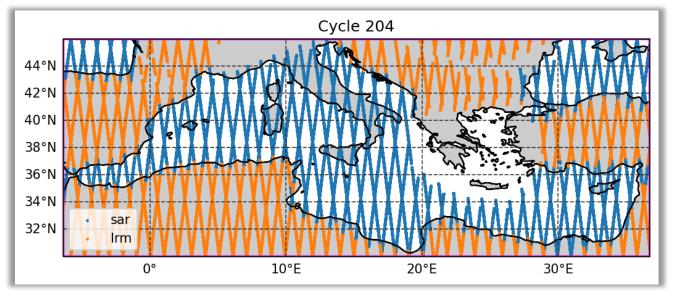
- □ -6.4 E to 36.5 E lon
- 30 N to 46 N lat

#### Mode

- ☐ SAR and LRM observations
- No SarIn (at the moment)

#### **Time**

☐ 16 Jul 2010 to present (full CryoSat-2 mission)


#### **Operational production**

New observations updated on a monthly basis

# The Cryo-TEMPO Coastal Ocean TDP



## **Area of focus: Mediterranean Region**



Changes in CryoSat-2 mode mask after December 2015

- ☐ Created from L1B and L2
- ☐ 20 Hz product
- ☐ GOP baseline-C product

#### **Space**

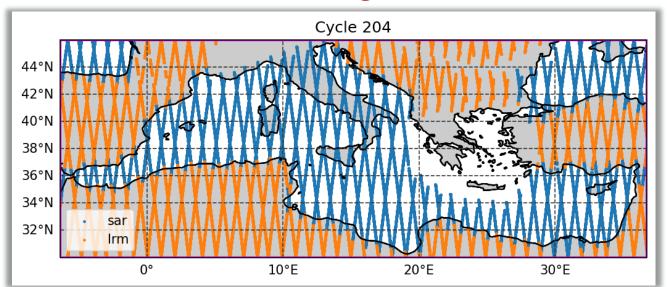
- □ -6.4 E to 36.5 E lon
- □ 30 N to 46 N lat

#### Mode

- ☐ SAR and LRM observations
- No SarIn (at the moment)

#### **Time**

☐ 16 Jul 2010 to present (full CryoSat-2 mission)


#### **Operational production**

New observations updated on a monthly basis

# The Cryo-TEMPO Coastal Ocean TDP



## **Area of focus: Mediterranean Region**



# Variables included Time Latitude Longitude Flags Variables Variables Uncertainties Flags Land/valid/invalid Instrument mode (LRM, SAR) Variables (raw and filtered) ADT

□ Created from L1B and L2□ 20 Hz product□ GOP baseline-C product

#### **Space**

- □ -6.4 E to 36.5 E lon
- ☐ 30 N to 46 N lat

#### Mode

- ☐ SAR and LRM observations
- No SarIn (at the moment)

#### **Time**

☐ 16 Jul 2010 to present (full CryoSat-2 mission)

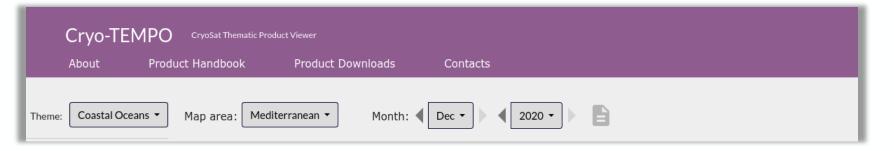
#### **Operational production**

New observations updated on a monthly basis

# **Accessing the Coastal Ocean TDP**



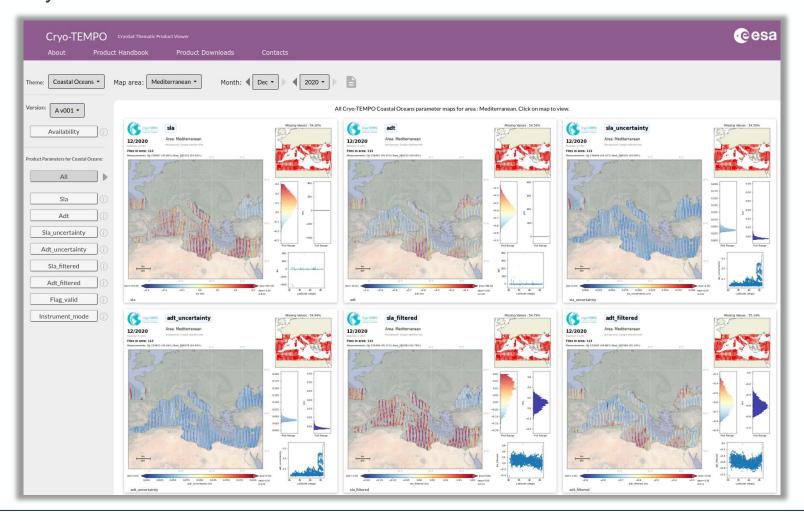
#### Two main access points


1. The ESA CryoSat science server

https://earth.esa.int/eogateway/missions/cryostat/data



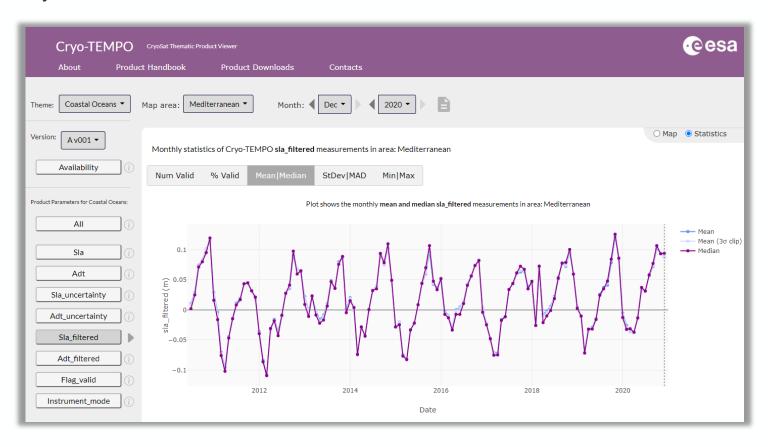
2. The Cryo-TEMPO web portal


http://www.cpom.ucl.ac.uk/cryotempo/index.php?theme=coastaloceans



# The Cryo-TEMPO web portal



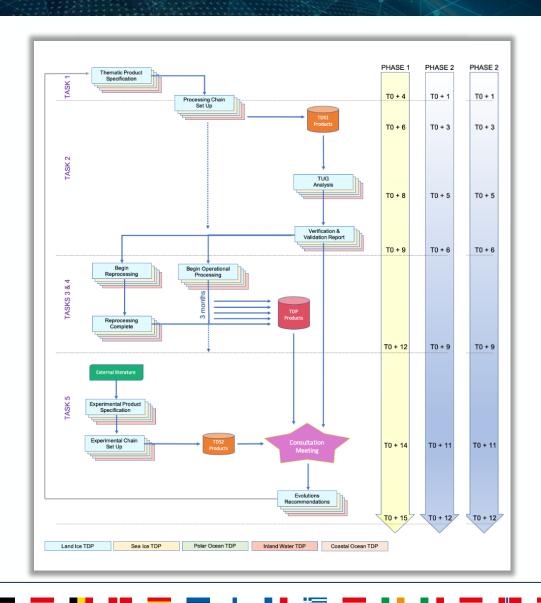

> Easiest way to quickly access and visualize the data



# The Cryo-TEMPO web portal



> Easiest way to quickly access and visualize the data




Time-series of average/median filtered SLA

http://www.cpom.ucl.ac.uk/cryotempo/index.php?baseline=A&version=001&parameter=sla\_filtered&area=mediterranean&theme=coastaloceans&year=2020&month =12&map\_or\_stats\_type=stats&availability\_area=all&availability\_type=files&stats\_type=mean\_median

# The Cryo-TEMPO production cycle





- ☐ 3 year-long project
- ☐ 1 production cycle per year (3 total):

Task1: Thematic data product specification

Task2: Processing chain setup

**Task3:** Reprocessed product generation

**Task4:** Operational product generation

Task5: Definition of evolutions

Evolutions defined based on user comments/requirements: we need your feedbacks !!!

- Current status: Task2 of Phase2
- TDP1 completed and available

# The Cryo-TEMPO TDP1



# **Algorithm specifications**

| Wet troposphere  | GPD+                                    |
|------------------|-----------------------------------------|
| Dry troposphere  | ECMWF                                   |
| Ionosphere       | GIM                                     |
| Altitude         | WGS84                                   |
| Retracker        | SAMOSA+ (SAR)<br>MLE4 (LRM)             |
| Solid earth tide | Cartwright model                        |
| Ocean tide       | FES 2014 B                              |
| Pole tide        | Desai 2015 with 2017 mean pole location |
| DAC              | MOG2D                                   |
| SSB              | Tran 2018                               |
| HFA              | Tran 2019 (only for LRM)                |
| MSS              | Composite (DTU, SCRIPPS,CNES-CLS15)     |
| MDT              | CMEMS_2020_MED                          |
| Editing          | Iterative                               |
| Filtering        | Lanczos low-pass                        |

#### **Corrections from CryoSat-2 L2 products**

- Provided at 1Hz
- Linearly Interpolated at 20Hz

#### **CryoTEMPO** specific corrections (in bold)

- Pole Tide, MSS and MDT: bilinerally interpolated from the reference fields (Pole Tide includes a LUT for pole position)
- Global MSS but MDT specific for the Mediterranean region
- SSB, HFA, Editing and Filtering: all based on 20Hz observations

More info in the Cryo-TEMPO Product Handbook: http://www.cpom.ucl.ac.uk/cryotempo/pdf\_viewer.php?theme=polaroceans

# The Cryo-TEMPO TDP1

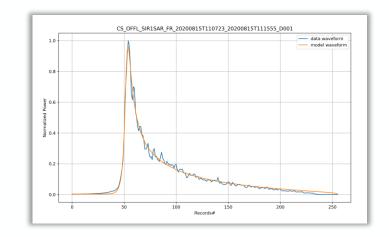


# **Algorithm specifications**

| Wet troposphere  | GPD+                                    |
|------------------|-----------------------------------------|
| Dry troposphere  | ECMWF                                   |
| Ionosphere       | GIM                                     |
| Altitude         | WGS84                                   |
| Retracker        | SAMOSA+ (SAR)<br>MLE4 (LRM)             |
| Solid earth tide | Cartwright model                        |
| Ocean tide       | FES 2014 B                              |
| Pole tide        | Desai 2015 with 2017 mean pole location |
| DAC              | MOG2D                                   |
| SSB              | Tran 2018                               |
| HFA              | Tran 2019 (only for LRM)                |
| MSS              | Composite (DTU, SCRIPPS, CNES-CLS15)    |
| MDT              | CMEMS_2020_MED                          |
| Editing          | Iterative                               |
| Filtering        | Lanczos low-pass                        |

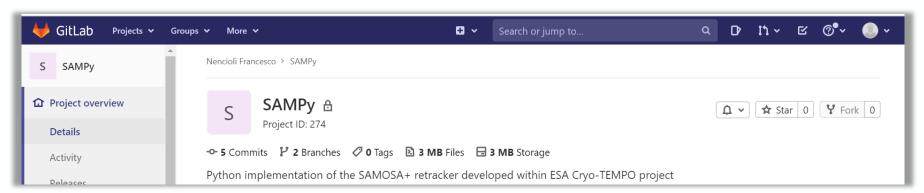
#### **Corrections from CryoSat-2 L2 products**

- Provided at 1Hz
- Linearly Interpolated at 20Hz


#### **CryoTEMPO** specific corrections (in bold)

- Pole Tide, MSS and MDT: bilinerally interpolated from the reference fields (Pole Tide includes a LUT for pole position)
- Global MSS but MDT specific for the Mediterranean region
- SSB, HFA, Editing and Filtering: all based on 20Hz observations

More info in the Cryo-TEMPO Product Handbook: http://www.cpom.ucl.ac.uk/cryotempo/pdf\_viewer.php?theme=polaroceans


# The Cryo-TEMPO TDP1: SAMPy





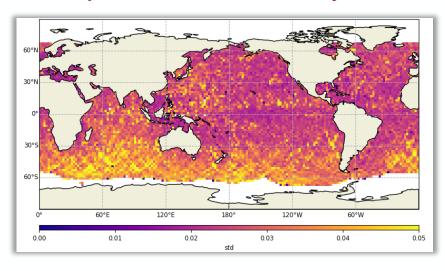
- > SAMOSA+: evolution of the SAMOSA retracker with enhanced performance in coastal regions (more info in Dinardo et al., 2018)
- > Python implementation specifically developed for Cryo-TEMPO
- Validation performed vs analogous products from ESA GPOD

GitLab repository of the Python implementation of the SAMOSA+ algorithm shared within the consortium https://gitshare.cls.fr/fnencioli/sampy (requires user + password)



If interested in accessing the code please contact me (fnencioli@groupcls.com)

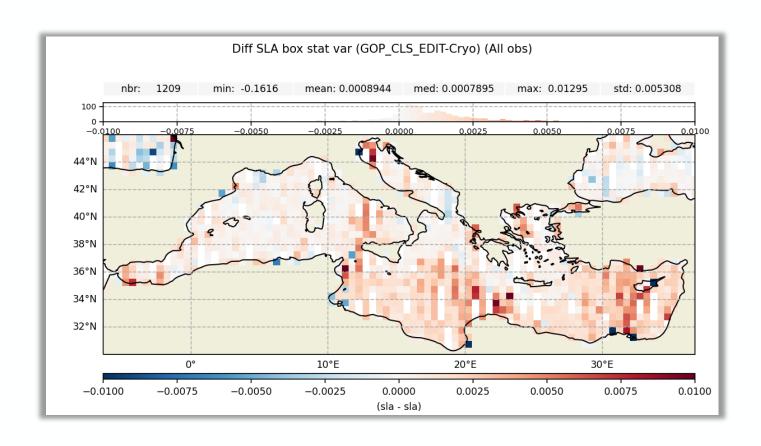
# The Cryo-TEMPO TDP1: HFA




- Correction for the correlation between significant wave height (SWH) and range errors
- Dependent on swell at the sea surface
- Computed based on empirical models/relations (in form of LUT)
- Correction only for LRM @ 20Hz (no SAR equivalent) (however surface flag provided at 1 Hz)
- 1. SWH @ 20 Hz filtered (Lanczos2 with 200 pts half widh window)
- Portion of SWH residual converted into HFA correction (empirical relation dependent on local values of filtered SWH)

#### **Known issue** (to be verified for CryoTEMPO):

Slight degradation of mesoscale (>50 km scale)


#### Example of SLA error: J3 20 Hz Cycle 20



# The Cryo-TEMPO TDP1: HFA

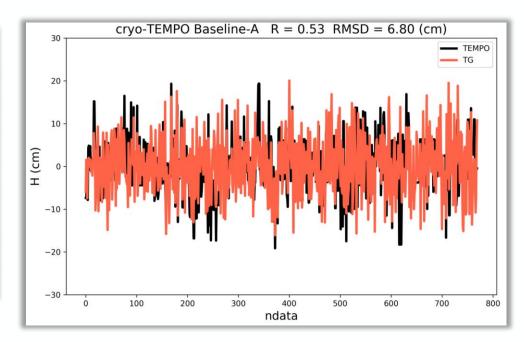


- ➤ Validation of the TDP1 performed against the GOP product
- ➤ Map of averaged SLA variance difference (1°x1° boxes) between GOP and Cryo-TEMPO



- Variance reduced mostly everywhere (reduced noise)
- Largest reduction in the LRM region
- Effect of the HFA correction

# The Cryo-TEMPO TDP1: Comparison with in-situ




#### Sea Level assessment: comparison vs tide gauges in western Mediterranean sea

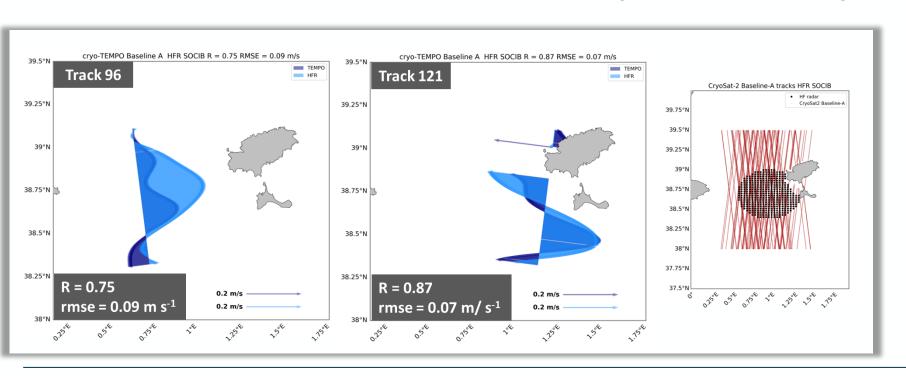
Instituto Mediterráneo

- Tide gauge records processed according to Sánchez-Román et al. (2020):
  - Removed tidal components
  - Dynamic Atmospheric correction from AVISO website
  - Corrected vertical movements from glacial isostatic adjustment (GIA)

| western<br>Mediterranean Sea | Baseline-A |
|------------------------------|------------|
| R                            | 0,53       |
| RMSD (cm)                    | 6.80       |
| Variance TG (cm²)            | 49         |
| Variance ALT (cm²)           | 53         |
| Variance TG-ALT<br>(cm²)     | 46         |
| data pairs                   | 781        |
| Stations                     | 18         |



- Overall consistency between Cryo-TEMPO filtered SLA and TG records
- Correlations in line with those reported for Jason-3 and Sentinel-3A in the region (although larger RMSE)
- Further refinement of the analysis is currently performed


# The Cryo-TEMPO TDP1: Comparison with in-situ

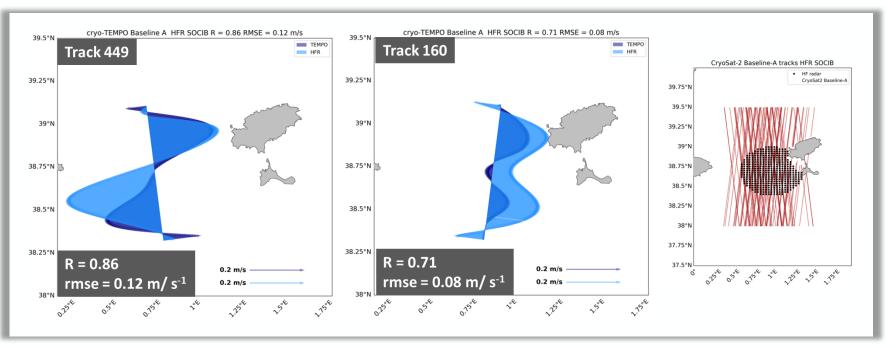


#### Surface current assessment: comparison vs HF radar velocities in the Balearic sea



- HFR data processed according to the methodology proposed by Mulero-Martínez et al. (2021)
  - Butterworth low-pass filter (48-hours cut-off period) to remove the high frequency signal
  - HFR velocity bilinearly interpolated over the altimeter track measurement positions
  - Low-pass Loess filter (43 km cut-off wavelength) to remove the high frequencies not resolved by altimetry




# The Cryo-TEMPO TDP1: Comparison with in-situ



#### Surface current assessment: comparison vs HF radar velocities in the Balearic sea



- HFR data processed according to the methodology proposed by Mulero-Martínez et al. (2021)
  - Butterworth low-pass filter (48-hours cut-off period) to remove the high frequency signal
  - HFR velocity bilinearly interpolated over the altimeter track measurement positions
  - Low-pass Loess filter (43 km cut-off wavelength) to remove the high frequencies not resolved by altimetry

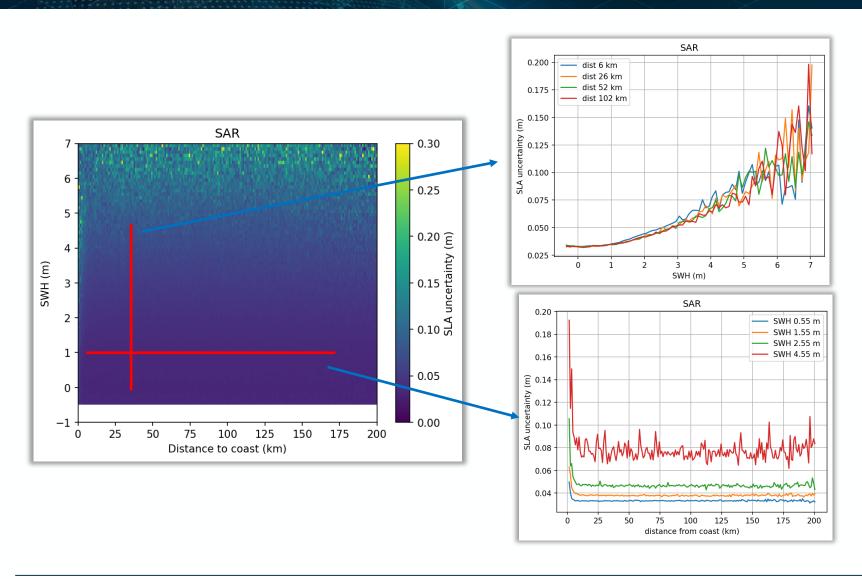


- Overall consistency between Cryo-TEMPO geostrophic velocities and HFR records
- Errors between the two smaller than previously reported from analogous comparison for Saral-AltiKa observations



#### **Uncertainty Estimation: Small-wavelength errors (SWE)**

- Errors associated with individual measurement
- Mostly due to SWH and Distance from the Coast


**Hypothesis:** consecutive measurements @20 Hz observe roughly the same conditions

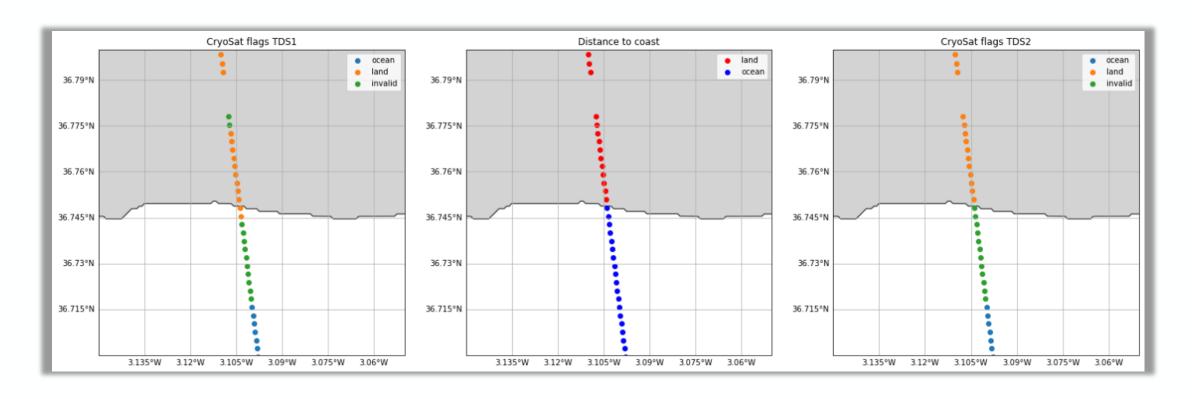
SLA difference of consecutive observations binned wrt to

- □ SWH (every 10 cm)
- ☐ Distance from the coast (every 1 km)

**Error** = Standard deviation of the difference within each bin / sqrt(2)

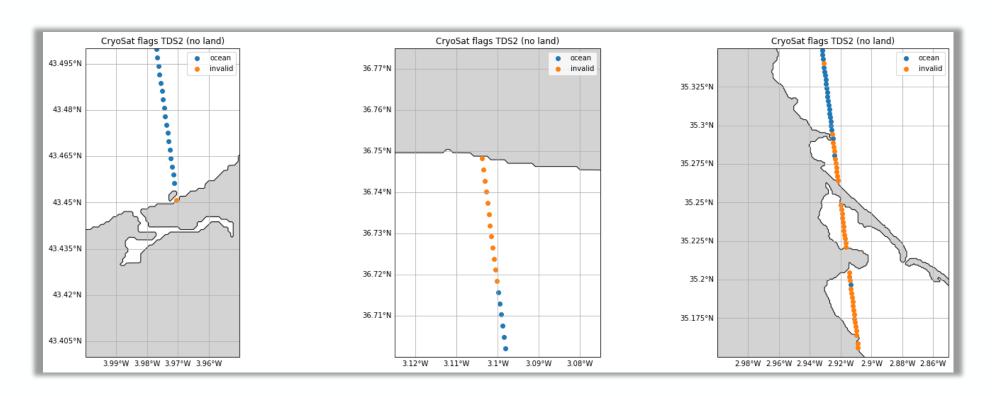





- Error increases with increasing SWH
- For a given SWH, error does not vary up to < 5 km from the coast

(CryoSat-2 uses modelled WTC)

 Error increases within 5 km from the coast




 In future TDP2: improved land flagging (compared to GOP product) based on on GSHHG database https://www.soest.hawaii.edu/pwessel/gshhg/





- In future TDP2: improved land flagging (compared to GOP product) based on on GSHHG database https://www.soest.hawaii.edu/pwessel/gshhg/
- Large number of invalid points (especially around complex morphologies)
- Improved interpolation/extrapolation methods for geophysical corrections to be explored



# Conclusions



- CryoSat-2 observations remain underutilized in oceanography despite the advantages of SAR technology
- Dedicated CryoTEMPO regional coastal product in the Mediterranean sea
- Initial comparison with in-situ observations shows analogous or better performance than existing satellites
- Still room for improvements in the near-shore region (<5 km from the coast)</li>
- Iterative cycle to improve Cryo-TEMPO products each year
- User feedbacks will be an integral part of the process to further improve the product performance near the coast

fnencioli@groupcls.com