

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

Satellite data rescue from Earth observing missions of the 1960s and 1970s

- Satellite radiances form a critical component of the observing system in numerical weather prediction (NWP), but very little satellite data is assimilated before 1979
- This is despite there being a number of satellite missions dating back to 1964 with potentially valuable data to help constrain past climate (through assimilation in the next generation of climate reanalyses)

Satellite data rescue in C3S

Satellite data rescue & reprocessing activities in C3S

→ THE EUROPEAN SPACE AGENCY

Early satellite data rescue

Our work focuses on the recovery, assessment and preparation of a selection of these pre-1979 satellite data records for assimilation in ERA6

- Completed (C3S 311c_Lot1): 2018-2021 (blue sensors)
- In progress (C3S2 314): 2022-2024 (red sensors)

→ THE EUROPEAN SPACE AGENCY

Sensor vertical sensitivity

- Transition from surface-only sensing in 1964 (HRIR) to stratospheric sounding starting in 1969 (SIRS)
- IRIS was the first hyperspectral sounder (10 months data in 1970-71)

Sensor vertical sensitivity

- The SCR was a stratospheric sounder with 6 channels in the 15 μm CO₂ band
- NEMS, SCAMS and MSU were microwave sounders (surface → lower stratosphere)

Sensor vertical sensitivity

→ THE EUROPEAN SPACE AGENCY

Data quality issues

 Significant amounts of bad data are present in the original datasets for most sensors e.g. corrupted/noisy data, calibration

issues, timing/geolocation errors...

VTPR geolocation errors (27/06/76)

Nimbus 2 MRIR: contaminated data at swath edges

Nimbus 4 THIR: elevated noise due to tape recorder flutter

Image: the second se

Data QA: Flagging

QC applied

BT / K

260

- 240

- 220

- 200

180

- Additional quality flags have been developed to greatly improve overall data quality and usability
- These flags are encapsulated by an overall quality flag for ease of use

No QC

Data QA: Geolocation updates

• We have used modern software to recalculate the geolocation for each sensor, with significant improvements for most sensors

 Clear improvements at the poles for all Nimbus sensors

📲 📰 🚥 🕂 📲 🔚 🔚 🔚 📲 🔚 🚛 🖓 🛌 📲 🖬 🖬 🖬 🖉 🐜 🖓

Corrected

Comparison to RTM simulations (O-A)

- For further QA and to characterise potential instrument biases in preparation for assimilation in ERA6, we have assessed the radiances against RTM simulations with the background state from ERA5 (O-A)
 - Restricted to clear-sky conditions for surface and tropospheric channels
 - We have looked for tendencies in O-A as a function of parameters such as scene temperature, latitude, viewing angle, and instrument temperature
 - Interpretation of these tendencies can be complex...
 - E.g. scene temperature dependent trends may be due to calibration-related errors, spectral response function errors or model biases

Nimbus 2 MRIR O-A vs scene temperature (RTM)

6.5 µm

O-A: instrument error

- Example of likely **instrument error**:
 - Trends seen in O-A as a function of instrument (housing) temperature are evidence of error in the original instrument calibration as the housing was used as a calibration reference

O-A: model stratospheric warm bias

- Example of likely model error:
 - A persistent negative O-A bias (model warm bias) is seen for IRIS & SIRS-A & SIRS-B (1969-1971) for channels peaking in the mid/upper stratosphere at high southern latitudes in local winter
 - Departures of 10-20K for the coldest scenes over the South Pole

- The hypothesis of model error is supported by available rocketsonde T profiles over Antarctica (not assimilated in ERA5) which indicate large differences with ERA5 in 1971-1972, but much smaller differences from 1973, possibly due to assimilation of VTPR data...
- VTPR data also indicate a bias relative to ERA5 over the South Pole, but the differences are much smaller than for SIRS and IRIS

Summary

- A number of early satellite missions during the 1960s and 1970s generated significant amounts of Earth observing data, the majority of which is not currently exploited in climate reanalysis
- As part of the wider C3S data rescue activities we have worked on preparing the data from a selection of these early sensors for assimilation in ERA6
 - These sensors have a diverse range of sensing capabilities with vertical coverage from the surface up to the mesosphere
- Much of this early data suffer from a range of quality issues extensive efforts have been made to improve data quality and usability through quality flagging and corrections to the instrument geolocation
- Through O-A assessment we can better understand instrument behaviour and characterise biases
- Discovery of an apparent stratospheric warm bias in ERA5 highlights the potential value of assimilating data from these historic satellite missions

____ ▋▋ ▋▋ ____ ━━ ┿━ ▋▋ ____ ▋▌ ▋▋ ___ ╬₩ ___ ▅▅ 10 km ▋▌ ▓K ▋▋ **●**■ 11 ₩ → THE EUROPEAN SPACE AGENC

Sensor characteristics

Phase 1

Sensor	Time period	Channels	Function
HRIR	1964-1970	Single 3.4-4.2 µm channel (Nimbus 1&2) and additional 0.7- 1.3 µm component (Nimbus 3)	Map night-time cloud clover and surface/cloud top temperature
MRIR	1966-1970	6.7 μ m water vapour, 10.5 μ m window, 15 μ m CO ₂ , 5-30 μ m, 0.2-4.0 μ m visible	Detect surface up to lower stratosphere temperature, water vapour, reflected solar energy
SIRS	1969-1971	7 channels in CO_2 band and 1 window channel (Nimbus 3) and extra 6 channels in water vapour band (19-35 μ m) on Nimbus 4	Atmospheric sounding up to mid- stratosphere (220km footprint)
IRIS	1970-1971	862 channels in 400-1600 cm ⁻¹ (6.25-25 μm) interval	Early hyperspectral sounder with surface sensing capability
THIR (N4-N6)	1970-1977	6.7 μm water vapour and 11.5 μm window	Map cloud cover, cloud top temperature, surface temperature, relative humidity
VTPR	1972-1979	8 channels in window, CO_2 and water vapour bands (11.9-18.7 μm)	Atmospheric sounding up to mid- stratosphere
PMR	1975-1978	2 channels (cells) in 15 μm CO_2 band	Uses pressure modulation to sense at different heights in upper stratosphere and mesosphere (45-90 km)
SSU	1978-2006	3 channels (cells) in 15 μm CO_2 band	Retrieval of temperature in mid/upper stratosphere (29-44 km)

Phase 2

Sensor	Time period	Channels	Function
THIR (N7)	1978-1985	6.7 μm water vapour and 11.5 μm window	Map cloud cover, cloud top temperature, surface temperature, relative humidity
SCR	1970-1973	6 channels in the 15 μm CO_2 band	Atmospheric temperature sounding up to upper stratosphere
NEMS	1972-1973	5 channels (22.235, 31.4, 53.65, 54.9, 58.8 GHz)	Atmospheric sounding up to lower stratosphere (nadir only)
SCAMS	1975-1976	5 channels (22.231, 31.65, 52.863, 53.845, 55.445 GHz)	Atmospheric sounding up to lower stratosphere (across-track)
ESMR	1972-1977	Single channel at 19.35 GHz	Sea-ice, land composition and rainfall over ocean
MSU	1978-2005	4 channels (50.30, 53.74, 54.96, 57.95 GHz)	Temperature sounding up to lower stratosphere

*

Characterising uncertainties

- Uncertainty trees can be used as a tool to identify all possible sources of error contributing to the measured radiance
- We can estimate instrument noise and digitisation but difficult to quantify other error sources...

16