СР

The Evolution of NASA's Earth Observing System Data and Information System (EOSDIS)

Authors: Andrew Mitchell¹, Rahul Ramachandran² and Manil Maskey²

¹NASA Goddard Space Flight Center ²NASA Marshall Space Flight Center

Tuesday 24.05.2022

Living Planet Symposium 2022

Session: B4.01 Heritage missions - Heritage Missions and Long Time Data Series

Earth Science Data and Information System (ESDIS)

- The ESDIS Project manages the science systems of the Earth Observing System Data and Information System (EOSDIS).
- EOSDIS is a comprehensive distributed Earth science data and information system designed to support NASA's Earth science missions.
- EOSDIS is designed to ingest, archive, distribute, visualize, all types of Earth Science data which include:
 - field campaign measurements, airborne data, in situ data, model data, ancillary products used for processing and other related datasets.
- The ESDIS Project provides and controls all aspects of the effort including but not limited to requirements, design, acquisition, development, operations, maintenance and decommission.

EARTH SYSTEM OBSERVATORY

CCP

SURFACE BIOLOGY AND GEOLOGY

Earth Surface & Ecosystems

CLOUDS, CONVECTION AND PRECIPITATION

Water and Energy in the Atmosphere

AEROSOLS

Particles in the Atmosphere

SURFACE DEFORMATION AND CHANGE

Earth Surface Dynamics

MASS CHANGE

Large-scale Mass Redistribution Discipline Specific, Distributed, Active Archive Centers (DAACs) Science Investigator-led Processing Systems (SIPS)

EOSDIS Products Delivered: FY00 thru September 2021

Millions

Motivation for Commercial Cloud

Motivation for Cloud

Projected Data Volumes

Growth of Mission Data & Processing: Projected rapid archive growth and the need to effectively process significantly larger volumes of new mission data requires **rethinking existing architectures**.

Data Systems: More cost-effective, flexible, and scalable data system ingest, archive, and distribution solutions are needed to **keep pace with new mission advancement**.

Science Users: Significantly larger data volumes
requires additional ways to access and utilize this
data, with "Data Close to Compute" or Data Lake".
Bring Algorithms to the cloud.

Yearly EOSDIS Archive Growth Projections for Current Holdings and

Current User Interaction

User must download data from centers across the US

What's Good: decentralization means that systems are independently available; minimize the decentralized view by common functions (Earthdata Search)

What's Not So Good: user has to get data from each location; user must invest in processing capacity; having many interfaces is confusing and complicated

Envisioning an EOSDIS "Data Lake"

Evolution of EOSDIS in the 2020s

- Move data into commercial cloud where all is accessible
- Make data versions in the Cloud analysis ready
- Provide common services on the data \
- Enable easily understood access/use in the Cloud

User now goes to one location to get data - still has ability to download data, but will be able to use even more services that will be available in a common environment

ASF ASDC CDDIS GESDISC GHRC LAADS LPDAAC NSIDC ORNL OBDAAC PODAAC SEDAC

The EOSDIS Data Lake is part of a suite of EOSDIS Cloud capabilities:

- Core cloud compliance, security, reporting, cost control, and metrics capabilities
- EOSDIS application and service hosting capabilities
- EOSDIS data hosting capabilities

Our Elevator Pitch

By hosting NASA's Earth science data in the cloud, EOSDIS is able to realize several end user benefits:

- Power: Any user can access big processing power "next to" Big Data.
- **Performance**: Data can be offered in a form enabling high-performance analysis.
- Freedom from Data Transfers: Users need not move Big Data.
- Freedom from Data Management: Users need not store and manage Big Data.
- **Data Co-location**: Users can easily work with multiple EOSDIS datasets together.
- Choice: Users can still download data if they prefer.

Free image from https://www.dreamstime.com/photosimages/elevator-pitch.html

Earthdata Cloud -EDC-

Improve the efficiency of NASA's data systems operations – <u>continues free and open access to data</u>

- Prepare for planned high-data-rate missions
- Increase opportunity for researchers and commercial users to access/process PBs of data quickly without the need for data management

NASA Earthdata Cloud (EDC) – http://earthdata.nasa.gov

Transparent/extendable open source processing framework

Components of the Earthdata Cloud

Cloud Platform Infrastructure

Common Services & Controls

What is the Earthdata Cloud Platform?

Earthdata Cloud Platform (NGAP - NASA General Application Platform) is a multi-account, Infrastructure-as-a-Service (IaaS) cloud platform operating on Amazon Web Services (AWS), providing shared cloud services and controls to EOSDIS.

- 1. NASA-Approved Amazon Web Services (AWS): vetted AWS and thirdparty Software-As-A-Service (SAAS) services and process to add new. Focus is on using AWS cloud-native services
- 2. Code Deployment Services: DevOps Continuous Integration Continuous Delivery (CICD) Pipeline to security scan, build, and deploy code
- **3.** Use of Infrastructure as Code: including re-useable template to define a multi-account ecosystem
- 4. Single System Security Plan (SSP) and Authority to Operate (ATO)
- 5. Single Identity and Access Management Solution (CloudTamer.io):
 - Rotate AWS access keys
 - Apply session limits
 - Provide role-based access control
 - two-factor authentication

Unifying Ingest & Archive in the Cloud: Cumulus

What is Cumulus?

Custom built, open source, lightweight, cloud-native framework for data ingest, archive, distribution and management

A lightweight framework consisting of:

<u>**Tasks</u>** a discrete action in a workflow, invoked as a Lambda function or EC2 service, common protocol supports chaining</u>

Orchestration engine (AWS Step Functions) that controls invocation of tasks in a workflow

Database store status, logs, and other system state information

Workflows(s) file(s) that define the ingest, processing, publication, and archive operations

Dashboard create and execute workflows, monitor system

Unifying Data Services in the Cloud: Harmony

Historically, EOSDIS DAACs have all provided their own tooling with diverse interaction patterns and APIs. Harmony is our ongoing effort to revisit these siloed capabilities in a more harmonized manner.

EOSDIS Conceptual Cloud Based Architecture

Additional information is available at:

http://earthdata.nasa.gov/

https://earthdata.nasa.gov/learn/articles/cloud-articlesannouncement

Thanks for the support from all of the scientists, engineers, accountants, developers and operators of the EOSDIS system!

