

Copernicus: 4 Core Products Algorithm Studies funded by the EU and ESA

COPA - Copernicus: 4 Core Products Algorithm Studies

Impact of the SLSTR geometry configuration versus (A)ATSR geometry configuration on retrieved time series

Pekka Kolmonen, Larisa Sogacheva, Stéphane Ferron, Véronique Bruniquel, Philippe Goryl

Disclaimer The views expressed herein can in no way be taken to reflect the official opinion of the European Space Agency or the European Union

Contents

Contents

- Study description
- L2 simulation studies
- ATSR and SLSTR monthly L3 AOD CDRs: Products harmonisation and filling gap between the products

- The study concentrated on the aerosol product retrieved using the SY_2_AOD processor – the derived surface reflectance was also partly evaluated
- The main difference affecting the products between the (A)ATSR and SLSTR instruments is the mirroring of the oblique view from forward 55° to backward 55°
 - Other contributing differences: swath, spatial resolution, added cirrus channel
 - Also, there are deficiencies in the calibration of the SLSTR channels utilized in the retrieval of some of the L2 products – new calibration correction issued 2021
- Goal: Assess and report the impact of the mirrored oblique view on the selected L2 products (AOD 550 nm, Nadir surface reflectance 550 nm)
- Goal: Provide information to combine the (A)ATSR and SLSTR CDRs

Study description

- The main geometric difference potentially affecting the L2 retrieval results between the (A)ATSR and the SLSTR instruments is the change of the oblique view from 55° forward to 55° backwards.
- The forward scattering conditions of the (A)ATSR instrument in Northern Hemisphere are replaced by backward scattering conditions of the SLSTR instrument, and vice versa in Southern Hemisphere

- SLSTR L1B scenes were used to set the geometry and reference AOD
- AATSR-like geometry was computed by mirroring the SLSTR oblique relative azimuth angle by 180 degrees. Note: the processor is still the SLSTR SYN_2_AOD
- Two different approaches in the simulations
- Scene generation The forward model of the SYN_2_AOD processor was used
- Pixel classification was used for the surface description
- Climatological aerosol information was used for the aerosols
- Enables to study the retrieval without/with added noise

- Scene generation Full BRDF surface model with radiative transfer calculations
- Monthly global, 0.1-degree full BRDF database ADAM was utilized to set the surface reflectance
- A rural aerosol model. AOD from climatology
- Mimics the conditions in the actual retrieval

SLSTR

AATSR

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

L2 Simulation Studies

AOD evaluation – Examples over land

SYN_2_AOD forward model

Full BRDF simulations

Forward view, North 12000 10000 8000 6000 4000 2000 -0.2 0 0.2 0.4 estimation - reference

SLSTR

AATSR

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

L2 Simulation Studies

AOD evaluation – Examples over ocean

SYN_2_AOD forward model

Full BRDF simulations

L2 Simulation Studies

Nadir land surface evaluation example

Full BRDF simulations

SLSTR

AATSR

- The (A)ATSR and SLSTR AOD datasets were validated extensively to observe and report the bias between the retrievals in Northern/Southern hemispheres, and in a selected regions
- Recommendations how to combine the datasets were given
 - Bias correction between the (A)ATSR and SLSTR datasets to harmonize them
 - Filling the gap when there was no dual-view instrument (2012 2016) with an auxiliary dataset (MODIS)
- NOTE: for brevity here are mostly shown the NH/SH figures

ATSR and SLSTR monthly L3 AOD CDRs

BIAS – L3 monthly (A)ATSR and SLSTR AOD datasets with auxiliary

ATSR and SLSTR monthly L3 AOD CDRs

BIAS – There is no overlap of the (A)ATSR and SLSTR: determining the offset with

Here S3A shown – S3B almost identical

Different offset correction methods were tested, and recommendations given

- (A)ATSR dataset was modified to match the SLSTR datasets
- A gap-filling MODIS Terra dataset was modified to match the dual-view datasets
- End product a continuous monthly L3 AOD dataset (COPA v1.1) covering years from 1995 to 2021

Relative to Terra, monthly regional offsets between ATSR and S3A

The time series of the COPA v1.1 AOD dataset – Example: Europe

- The impact of the difference of the retrieval geometry between the dual-viewing (A)ATSR and SLSTR was studied
- L2 Simulated TOA reflectance
 - An AOD bias between the geometries was observed over land, to lesser extent over ocean
 - The retrieved nadir surface reflectance appears to be robust against the geometry differences in the full BRDF simulations

L3 monthly

- Global, hemispherical, and regional bias was recorded between the instrument geometries
- Methods were determined to harmonize the (A)ATSR and SLSTR datasets
- Method to fill the gap between the AATSR and SLSTR datasets was developed