

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

EUMETSAT CECMWF

Global and regional ozone trends and their seasonal variation derived from the 1995-2021 ESA-CCI GTO-ECV data record

M. Coldewey-Egbers¹, D. Loyola¹, K.-P. Heue¹, C. Lerot², and M. Van Roozendael² ¹DLR-IMF, Germany ²BIRA-IASB, Belgium

24 May 2022

ESA UNCLASSIFIED – For ESA Official Use Only

Motivation

- Analyze changes in total ozone during the past 2.5 decades based on the GTO-ECV data record
- Weber et al. (2021), BAMS "State of the Climate"
 - Since the end of the '90s, total ozone remained stable still below 1964-1980 mean – and with substantial yearto-year variability
 - In 2020 total ozone in middle and high latitudes were below the average of the past two decades
- Investigate possible longitudinal structures in trend patterns
- Analyze a possible seasonal dependence

GOME-type Total Ozone Essential Climate Variable

- Seven GOME-type nadir-viewing satellite sensors combined $\rightarrow 1^{st}$ version generated at DLR with national funding and 2nd version generated as part of ESA-CCI/+ ozone projects
- July 1995 December 2021 \rightarrow regularly extended as part of EU Copernicus C3S/2 ozone projects

Yeai

• 1°x1° monthly mean total ozone columns \rightarrow analyze longitudinal structure of trends

OMPS / SNPP

GOME-type Total Ozone Essential Climate Variable

- Details in Coldewey-Egbers et al., AMT, 2015
- Validation results in Garane et al., AMT, 2018

 Analysis of 50°-90° daily minimum ozone in Dameris et al., ACP, 2021

2020 Antarctic: longest-lasting and one of largest hole

1980 1985 1990 1995 2000 2005 2010 2015 2020

Total ozone trend analysis

- Update of Coldewey-Egbers et al., GRL, 2014
- Coldewey-Egbers et al., ACP, accepted
- $O_3(m) = A + B \cdot m + C \cdot SF(m) + D \cdot QBO30(m) + E \cdot QBO50(m) + F \cdot MEI(m) + G \cdot (A)AO(m) + X$

Regional total ozone trends

- SH: significant positive trends →
 0.6±0.5%/dec (subtropics) and 2.8±2.6%/dec (60°-70°S)
- NH: longitudinal structures → positive trends over the North Atlantic & barely significant negative over eastern Europe

Linear trend in tropopause pressure

Seasonal dependence of ozone trends (i)

Positive trends in North Atlantic region most pronounced in boreal winter (Dec-Jan-Feb)

Seasonal dependence of ozone trends (ii)

Deviation from annual mean trend

Trends in North Atlantic region and Europe most pronounced in boreal winter (Dec-Jan-Feb)

Positive trends in SH high latitudes maximum in austral winter and spring (Jun-Jul-Aug)

Seasonal dependence of ozone trends (iii)

Summary

Discussio

- Significant positive trends mainly in SH, but strong inter-annual variability in NH
- Total ozone trends indicate longitudinal structures in particular in NH
- Trends indicate a small seasonal dependence which changes with latitude
- GTO-ECV data record included in relevant reports: BAMS (since 2014), WMO (since 2010), IPCC 2021 (new)
- See also Weber et al. "Global ozone recovery trends in total ozone derived from observations and chemicalclimate modelling" (next but one presentation)

Global, regional and seasonal analysis of total ozone trends derived from the 1995-2020 GTO-ECV climate data record

Melanie Coldewey-Egbers¹, Diego G. Loyola¹, Christophe Lerot², and Michel van Roozendael² ¹Deutsches Zentrum für Luft- und Raumfahrt (DLR). Institut für Methodik der Fernerkundung, Oberpfaffenhofen, Germany ²Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium Correspondence: Melanie Coldewey-Egbers (Melanie.Coldewey-Egbers@dlr.de)

Mean total column ozone in six regions

- ESA-CCI+ ozone project: Generation of a merged ozone profile data record GOP-ECV based on same satellite sensors
- Input: ozone profiles retrieved with RAL scheme (Miles et al., 2015)
- Merging approach: based on de-seasonalized anomalies
- Harmonization w.r.t. GTO-ECV total columns: altitude dependent adjustment of the profiles (based on derivatives) in order to match the total columns

