

Characterization of spatial and temporal variability of HONO from wildfires using TROPOMI and GEMS (preliminary results)

<u>Nicolas Theys</u>¹, Christophe Lerot¹, Isabelle De Smedt¹, Huan Yu¹, Hanlim Lee², Jean-François Müller¹, Michel Van Roozendael¹

(1) Royal Belgian Institute for Space Aeronomy (BIRA-IASB).

(2) Division of Earth Environmental System Science, Major of Spatial Information Engineering, Pukyong National University, Korea.

TROPOMI HONO observations over fires in Victoria and New South Wales (Australia)

Atmospheric HONO

• HONO is a source of hydroxyl radical (OH).

 HONO emission budget and formation mechanisms are poorly constrained => impact on tropospheric chemistry remains uncertain.

 Until recently, measurements of HONO mostly using in-situ and spectroscopic techniques from instruments on the ground or onboard aircrafts

Detection and mapping of pyrogenic HONO is possible using high spatial resolution instruments like TROPOMI

Check for upda

Global nitrous acid emissions and levels of regional oxidants enhanced by wildfires

N. Theys¹², R. Volkamer^{2,3,4}², J.-F. Müller¹, K. J. Zarzana², N. Kille^{3,4}, L. Clarisse⁵, I. De Smedt¹, C. Lerot¹, H. Finkenzeller^{2,3}, F. Hendrick¹, T. K. Koenig^{2,3}, C. F. Lee^{2,3}, C. Knote^{6,6}, H. Yu¹ and M. Van Roozendael¹

First global survey

HONO/NO₂ (proxy of HONO production)

- Strong dependence with ecosystem type.
- Larger than previous estimates by a factor of 2-4.

OH production by HONO photolysis

- Dominant in fresh BB plumes, about 2/3 of total OH production.
- Possible large impact of HONO on oxidative plume chemistry and ozone production.

Points addressed in this presentation

- Can we improve the HONO spectral fitting? A better sensitivity would allow studying a wider range of fires.
- —Can we retrieve HONO from geostationary instrument like GEMS (1h resolution)?
- —What information can be obtained by studying jointly temporally-resolved HONO, NO₂ and fire activity data from space? This is relevant for improved representation of pyrogenic HONO emissions in air quality models.

Spectral fitting improvement

Covariance-based retrieval algorithm (COBRA) Theys et al., ACP, 2021

 $y = k.SCD + y_{bkg} + \epsilon$

y: $-\log(I/Io)$ (I, Io: wvl calibrated spectra) k, SCD: cross-section and slant column of HONO y_{bkg} : optical depth without contribution from HONO ϵ : measurement noise

 y_{bkg} statistical characterization from a set of HONO-free spectra by S and \overline{y} (covariance matrix and mean spectrum)

$$\longrightarrow \quad \widehat{SCD} = (k^T S^{-1} k)^{-1} k^T S^{-1} (y - \overline{y})$$

Spectral fitting improvement

DOAS

COBRA

HONO SCD (x10¹⁵ molec/cm²)

Geostationary HONO observations

Investigation of South East Asia burning season (agricultural and forest fires)

• March-April 2021

Atmospheric products from GEMS hourly sampling (+TROPOMI)

- HONO SCD (COBRA)
- NO₂ VIS SCD background corr. (oper.)

Fire Radiative Power (FRP) product from AMI/GEO-KOMPSAT-2A 10 minutes sampling (+VIIRS/S-NPP)

Acknowledgements: NMSC of KMA

Geostationary HONO observations

- Good spatial match between FRPbased fire locations and pixels with confident HONO detection.
- Many more HONO detections with GEMS compared to TROPOMI, in part due to better temporal sampling.

aeronom

Time evolution - North Laos

Time evolution - North Laos

7

 $\times 10^{16}$

- HONO emissions strongest during flaming combustion?
- NO₂ peak is shifted in comparison to HONO and FRP.

2021/03/01-2021/04/30 Lat: 17-23° Long: 100-105°

Time evolution - South Laos

Time evolution - South Laos

Conclusions

- Covariance-Based Retrieval Algorithm (COBRA) scheme improves significantly the detection of HONO.
- GEMS HONO retrievals are promising
 - Consistent with TROPOMI and similar retrieval quality.
 - Detection directly over fire locations and mostly around noontime.
- Time evolution of HONO compared to GEMS NO_2 and AMI FRP
 - HONO emitted at first stage of the fires (flaming combustion).
 - NO₂ and HONO peaks are not occuring at the same time.

Sesa Perspectives: DINAR project

Development and Interpretation of improved Nitrous Acid Retrievals

- Development of HONO VCD product from UV-vis sensors (TROPOMI, OMI, GEMS)
 - spectral fitting (SCDs)
 - radiative transfer in smoke plumes (AMFs)
- Development of HONO VCD product from TIR sensors (IASI, GIIRS)
- Cal/Val activities
- Interpretation and modelling
- Dissemination of output data sets
- Webpage: <u>http://hono.aeronomie.be</u>
- Contact: <u>theys@aeronomie.be</u>

