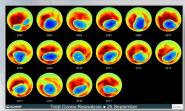
Perspectives on the atmospheric impacts of the Cumbre Vieja volcanic eruption from the Copernicus Atmosphere Monitoring Service

Mark Parrington (mark.parrington@ecmwf.int)

Antje Innes, Johannes Flemming, Sebastien Garrigues, Zak Kipling, Melani Ades, Nicolas Bousserez, Richard Engelen, Vincent-Henri Peuch (ECMWF) Samuel Remy (HYGEOS) Vincent Huijnen (KNMI) Olga Mayol-Bracero (Brookhaven National Laboratoy)

Atmosphere Monitoring

ESA Living Planet Symposium 2022, Bonn, 24 May 2022


What the Copernicus Atmosphere Monitoring Service has to offer https://atmosphere.copernicus.eu

Atmosphere

Monitoring

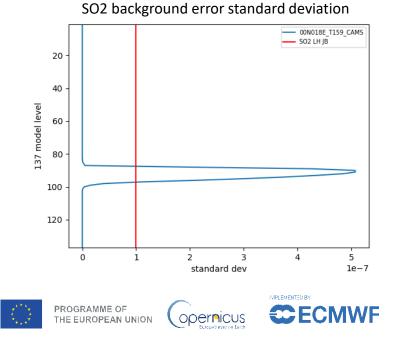
All data are free and open access

The CAMS portfolio includes
Earth Observation based
information products about:
past, current and near-future (forecasts) global atmospheric

composition;the ozone layer;

- air quality in Europe;
- emissions and surface fluxes of key pollutants and greenhouse gases;
- solar radiation;
- climate radiative forcing.

Quarterly validation reports of global and regional outputs.



Current use of SO₂ data in CAMS NRT system

Atmosphere Monitoring

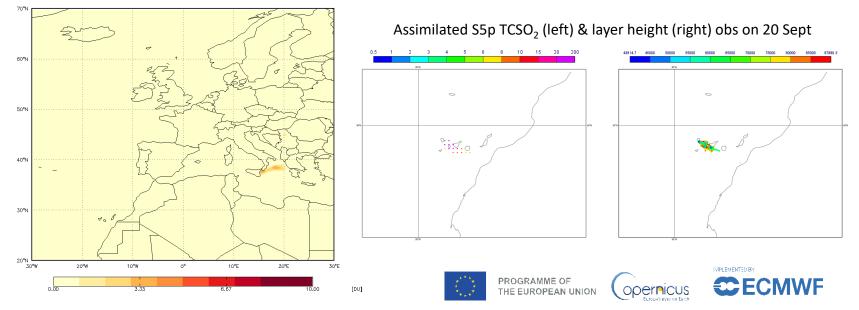
CAMS assimilates GOME-2 (B&C) and TROPOMI total column SO₂ retrievals making use of the volcanic flags provided by data providers (AC-SAF, ESA; algorithm from DLR)

- For operations we need to make assumptions about the plume height if this is not known in NRT
- Default: SO₂ is placed in troposphere at model level 98 (~ 550 hPa, 5 km) using a prescribed bg-error stdv profile
- This can be modified if injection height is known
- Currently: Globally constant injection height

Use of SO₂ Layer Height data in CAMS

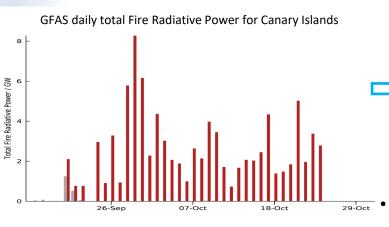
Atmosphere Monitoring

- DLR have developed algorithm to provide information about the plume height in NRT from TROPOMI (Hedelt et al., 2019, doi.org/10.5194/amt-12-5503-2019)
- Full-Physics Inverse Learning Machine (FP_ILM) algorithm
- SO2 LH project one of ESA's S5P Innovation projects
- These data have been tested in CAMS
- Data useful for SO₂ > 20 DU

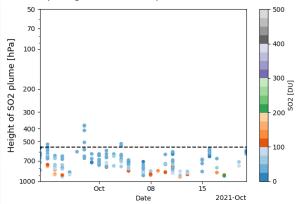


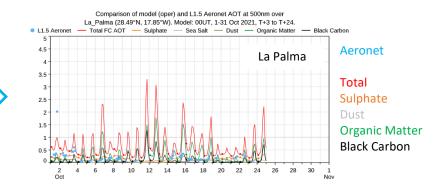
Eruption of Cumbre Vieja volcano: 19 September 2021

Atmosphere Monitoring


- Cumbre Vieja volcano on La Palma erupted on 19 September 2021 for first time since 1971
- First SO₂ detections from GOME-2 & TROPOMI assimilated by CAMS at 06z on 20 September
- TROPOMI layer height ~600 hPa
- Initial transport to the NW across N Africa, Europe and Mediterranean

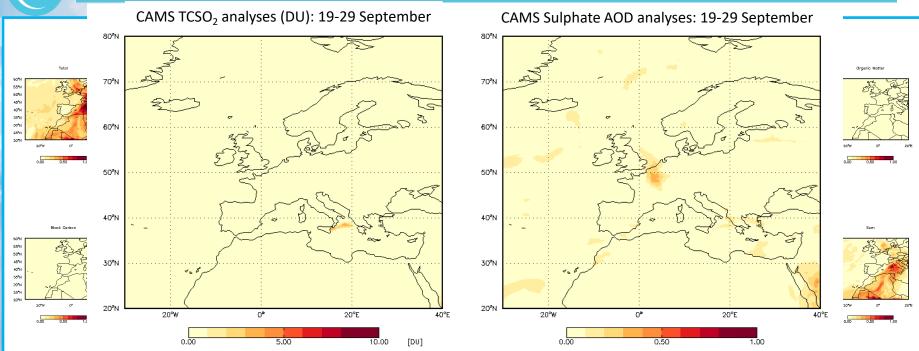
CAMS TCSO₂ analyses (DU): 19-29 September




SO₂ emissions and injection height

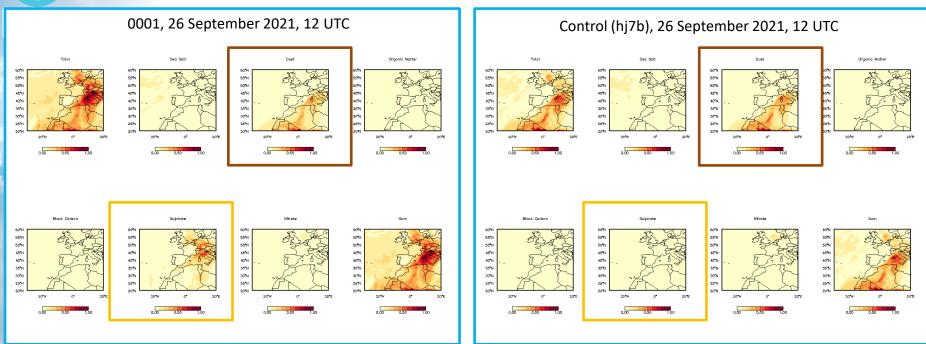
Atmospher Monitorin

S5p height of volcanic plume: 30W-20E, 20-50N


- Thermal anomaly from Cumbre Vieja detected by Terra+Aqua MODIS and assimilated in GFAS.
- Changes in TROPOMI observed SO2 layer heights correlate roughly with daily FRP data.
- Typical heights between 700-500 hPa below operationally assumed initial layer height at 500 hPa.
- False fire emissions in GFAS led to artificially high AOD (dominated by OM+BC) at La Palma.
 - Not seen at other Aeronet sites

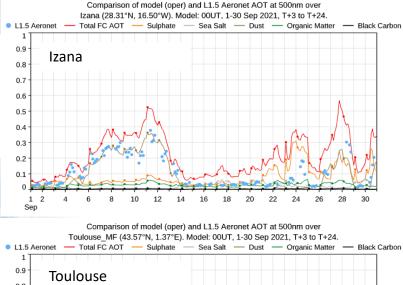
PROGRAMME OF THE EUROPEAN UNION

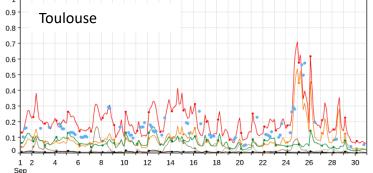
Sulphate aerosol formation

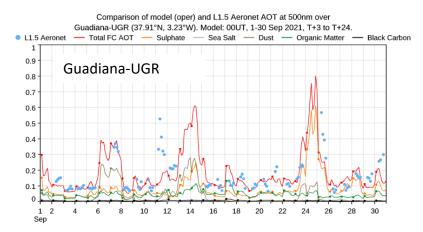

 Sulphate aerosol formation in volcanic plume appears after 2-3 days in operational forecasts (via interactive model chemistry) reaching E Europe to north of Saharan dust plume.

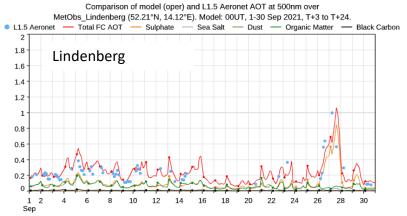
Sulphate aerosol formation

- Sulphate aerosol formation in volcanic plume appears after 2-3 days in operational forecasts (via interactive model chemistry) reaching E Europe to north of Saharan dust plume.
- Control experiment (hj7b) shows lower total AOD and corresponding dust plume but not sulphate (indicating origin related to assimilated SO₂).
 PROGRAMME OF THE EUROPEAN UNION COEFFICUS

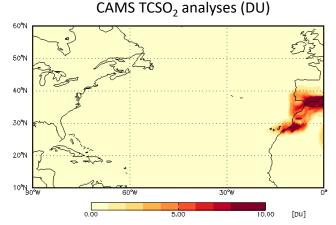

Aerosol evaluation with Aeronet over Europe

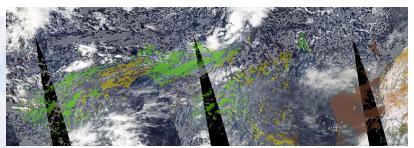

Atmosphere Monitoring

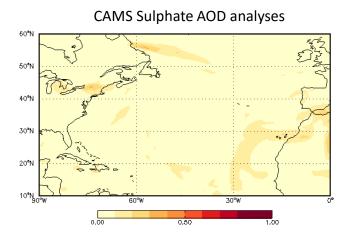

eronet


otal ulphate Just

organic Matter lack Carbon






Long-range transport across the Atlantic

SNPP-VIIRS aerosol retrievals on 9 October

CAMS analyses of TCSO2 and sulphate AOD show plume reaching Caribbean on a couple of occasions in October.

 NASA Worldview imagery from 9 October shows mixture of dust and fine mode aerosol in visible imagery & SNPP-VIIRS aerosol type retrievals across the Atlantic

PROGRAMME OF THE EUROPEAN UNION

28 September –

25 October

Reported air quality impacts

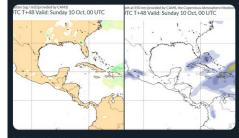
Atmosphere Monitoring

@YazzRodrgz

9 October

Air guality in **#PuertoRico** has deteriorated to **@EPA** UNHEALTHY levels due to an unusual, dense and stable #Saharandust layer. Visibility is 5 miles or less. Very fine particles probably #sulfates coming from the #CumbraVieia volcano 👗 have also been associated to this haze.

4 October NotiCentro contactó al Laboratorio de Química Atmosférica e Investigación de Aerosoles para conocer la razón de la densa bruma que arropó a Puerto Rico.



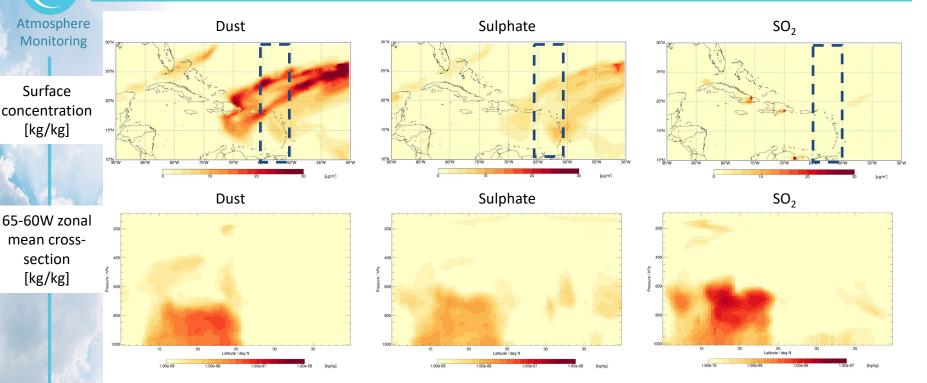
Analizan presencia de dióxido de azufre

Dr los

10 October

We received reports this weekend from Dutch Caribbean islands #Saba & #StEustatius of respiratory irritation. According to #ECMWF #CAMS this seems to be volcanic smog (VOG; vog.ivhhn.org) from the #CumbreVieja eruption on La Palma.

Transport of volcanic plume across the Atlantic coincided with reports of reduced visibility and degraded air quality in:

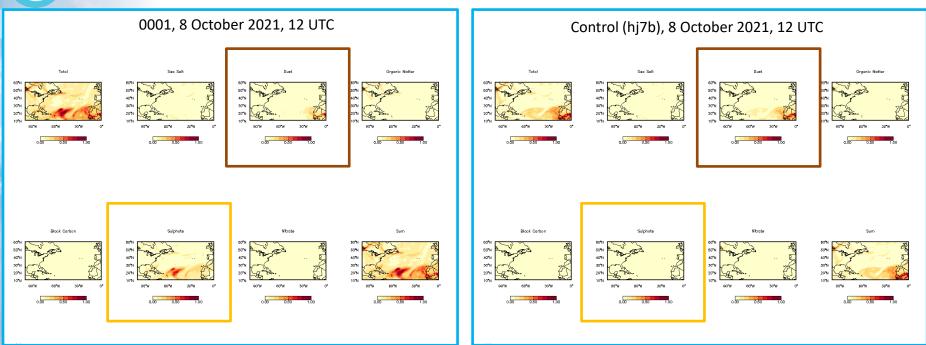

- 3 Oct Azores
- 4 & 9 Oct Puerto Rico
- 10 Oct Dutch Caribbean Islands

IME OF PEAN UNION

CAMS surface aerosol concentrations

- Sulphate aerosol mixed with Saharan dust.
- Highest concentrations in dust 'gaps'.

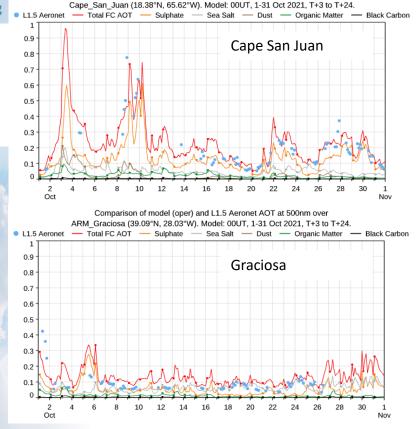
 Δ


PROGRAMME OF THE EUROPEAN UNION

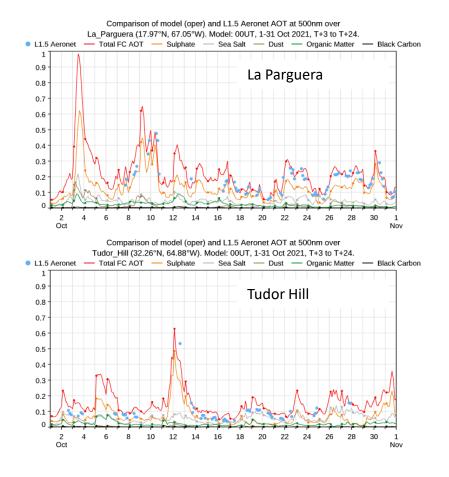
A

Sulphate aerosol formation

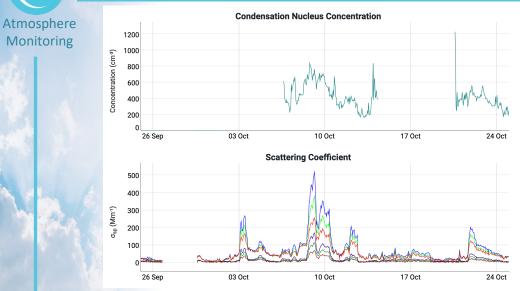
- Sulphate AOD is dominant source in CAMS operational forecasts with limited dust AOD transport across the Atlantic.
- Control experiment (hj7b) shows corresponding dust plume but not sulphate (indicating origin related to assimilated SO2).
 PROGRAMME OF THE EUROPEAN UNION COPERATION COPERATION

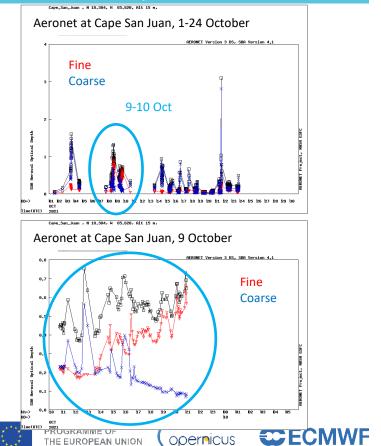

Aerosol evaluation with Aeronet over Atlantic and Caribbean

Atmosphere Monitoring


eronet

otal ulphate Just


organic Matter lack Carbon


Comparison of model (oper) and L1.5 Aeronet AOT at 500nm over

Air quality in the Caribbean: aerosol properties & AOD at Cape San Juan, PR

- Aerosol optical property measurements from NOAA aerosol network site
 - https://gml.noaa.gov/aero/net/getplot.php?key=overview&sta=cpr&t ype=avg
- Aeronet fine vs. coarse AOD
 - https://aeronet.gsfc.nasa.gov/cgi-bin/data_display_aod_v3
- Presence of fine-mode aerosol indicates potential sulphate aerosol contribution to observed air quality

Summary

Atmosphere Monitoring

- CAMS is able to monitor atmospheric impacts of volcanic eruptions through assimilation of total column SO₂ and AOD observations.
 - Inventory of outgassing emissions based on in situ measurements.
- Following eruption of Cumbre Vieja, CAMS analyses and forecasts provided information on the transport of total column SO₂ across Europe and the Atlantic.
- Conversion of SO₂ into sulphate aerosol through model chemistry results in good agreement in enhancement of total aerosol optical depth vs. Aeronet across Europe and the Atlantic.
- Potential surface air quality impacts in the Caribbean through episode of fine-mode aerosol on 9-10 October.
 - Ongoing investigation into quantifying the impacts.
- Some questions remain for the aerosol speciation in the assimilation could be better resolved with observations of aerosol type (e.g., dust from IASI).
- Future operational assimilation of observed SO₂ layer height information will improve forecast initialization over fixed background errors

