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* Reflectometry using satellite navigation signals (GNSS-R): bistatic forward
scattering at L-band (A.,,~19 cm)

GNSS satellite

electromagnetic source
(transmitter) EiHI

S
| jotal tangent plane
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GNSS-R signals are sensitive to L-band filtered

surface roughness (A. =3 A ~ 0.6m).
9 ( sea GNSS ) - %
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The statistics of this filtered roughness, through mean squared slopes
(mss), depend on combination of different variables: wind, fetch, waves

age, swell...

L-band MSS (adim.)
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Question

* In tropical cyclones, complex wave structure: different wave trains of different
fetches/ages juxtapose, non-linear effects...

* Does it make sense to ‘invert’ the observables into one of the combined variables
(e.g. wind speed)?

QUESTION:
How to use GNSS-R observables around tropical cyclones?
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Suggested answer

* Here we suggest to avoid ‘inversion’ schemes (GNSS-R depends on several
variables).

Instead, perhaps the assimilation of the ‘observable’ into complex wave
models could get the most of them

Note that the ‘observable’ is not an oceanographic variable
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Suggested answer

« To assimilate an observable, such as o, Into numerical models, the

observable must be expressed as a forward operator of the state

variables x of the model. 50 - H[X]

* A variational approach to data assimilation then consists of minimization of a
cost function J:

J(X) = Z(X—Xo) B (X—Xo)+ (0% - a0 T(E+ F) (02— 05 ()
_ |
Covariance of the Covariance of the Covariance of the
numerical ocean model observations forward operator H[X]

The approach corrects anomalies not originally captured in the numerical model: pre-fit
residuals or (O-B).
Certain degree of agreement required for the approach to converge.

9

- =W 411 = o1l O

g = 01 =2 E= = = m vl > THE EUROPEAN SPACE AGENCY



Contents

* Methodology

- =W 411 = o1l O

o

g = 01 =2 E= = mm am ¥ > THE EUROPEAN SPACE AGENCY



Methodology

* The goal of this initial exercise is to check whether spaceborne GNSS-R
observables, o, across TC are sufficiently close to the equivalent o,, estimated by

a complex wave model.

« This is the first and required condition for future assimilation of o,in such type of
models.

* A case example is presented: Goni typhoon.

CYGMNSS
Spaceborne GNSS-R data

from NASA/CyGNSS mission < 2
£ pY

CYGNSS data CYGNSS nbrecs

MODEL
Two-dimensional parametric

| ca -5
model for wave development - e
under a varying wind field é o ~ f ? cal CYGNSS-sampled MODEL nbrcs

GONI MODEL MODEL mss MODEL nhrcs sampled MODEL nhrcs
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Methodology

Why not assimilating GNSS-R measured mss?

PDF(slopes): the model has all
required information (e.g., Gram-
Chatrlier, binormal, Gaussian...)

CYGNSS

CYGNSS data CYGNSS nbrcs

MODEL |
e
-
é _ ~ cal CYGNSS-sampled MODEL nbrcs
GOMNI MOQDEL MODEL mss MODEL nhrcs sampled MODEL nhrcs ( ) >
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Methodology

PDF(slopes): assumed by the ‘data provider’ in the inversion procedure -
Gaussian

CYGMNSS

-

ey
-

N
=
£

aJ

CYGNSS data CYGMN55 mss select nearby tracks

MODEL

cal CYGHNSS-sampled MODEL mss

sampled MODEL mss

MODEL mss
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Case study: GNSS-R data

* Case study for Goni Typhoon 2020-10-29
* GNSS-R data:

« Level 1b NBRCS (0,) NASA/CyGNSS
* 3 tracks crossing Goni on 2020-10-29/30

2020-10-29_480_4 2020-10-29_533_8 2020-10-30_522_8

.
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Case study: 2D wave model

Two-dimensional parametric model for wave development under varying wind field

(Kudryavtsev, Yurovskaya & Chapron, 2021)

* The system describes the development of surface waves under a varying wind field in both space and
time, and the evolution of swell propagation in the absence of wind forcing.

* Input: 2D wind field at 1 km resolution from Sentinel-1 SAR images (provided by IFREMER).

*  Governing Equations: s-——p-

B =c, (u /c)? cos®(gr-

Energy and momentum [:-::J|'|-5{_sr"uql|{ n

(Hasselmann et al., 1976: Phillips, 1977):
OE / dt + c,0FE / &x, =S
| &M, /ot + c, oM, / ox; =S,

Cffagde

‘ E(ew, ) =A(p = ¢, YF ()

M, =k E/m =

SE :5

[&

S-' A mbr/g

K, E/g)

- momentum spectral density

A —LCDCIQSIH(,I’J i

- S, + 5,

- energy source

-momentum source - - - e

ai - Eroup \-'--t-:elo-crt\y-r

.sand some algebra... . oLl

CWiRd iRt e

v -.-,h’mA(er err]F((J)
. . - (Miles, 1957).

Do) - growth rate
~ [Plant, 1982; Meirlink et al. 2003)

jD ZIHI_(’-E(F(‘,_J(?J'&'.T_’)'—'
D= [S,dgde

e = J‘Ed:qr’d 7]

Dissipation:
Wave breaking

Non-linear interactions:

‘Four-wave interactions
“T ' [Hasselmann, 1962y T

Energy transfer toWards Iow;
.. .frequencies:. .. ... ... .. .. L
fo
Sy E
(Zakharowv, 2010;
© Baddlin et al', 2007) 17

- energy spectral density
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Case study: 2D wave model

* The model is solved in the storm frame of reference.

* Each wave train location and wave parameters (peak frequency, energy and direction) at each moment of

time are obtained with the use of 4th order Runge-Kutta scheme.

* Wave-rays visualize how wave trains develop and travel through the TC varying wind field, and how they

leave the storm area as swell systems.

* The wave train with maximal wave length/energy in a given grid cell can be treated as the primary wave
system. Each grid cell can be considered to analyze multiple wave systems and their time evolution.

* For this exercise: we used the L-band filtered mss, at each grid cell.

............

- Initial wave train ~ ©

locations : : |

Y/Rm
mé}i:-r'xlaalfg-mm
YR

- Wave rays after 48 hours

Hs, m
20 )

0
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Case study: 2D wave model

Outcome of the L-band mss model around
TC Goni on 2020-10-29
(three CyGNSS tracks overplotted)

Erack_nwm
. 2020-10-29_430_4
- 2ZOZ0-10-29_533_8
s+ 2020-10-30_522_38 00435

00390

toss | Radial
directior -
m - 00210
%}
E »
50% population (iso-proportion 50%) Relationship between mss anc_i wind speed _
| , | , | given by the model, for high winds around Goni
Wind speed (m/s) "
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Calibration process

The received GNSS-R power, at a given ‘pixel’, can be modeled as:

Bistatic ‘forward’ cross-section
(surface roughness dependent)

Instrument (transmitted Signal
power, transmitter and structure
projected

onto the area

(Q
Y
N
3_.
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Calibration process

From measurements:

Calibration required

Forward operator around the specular point (model):

oo = 7| R|?PDF (slope = 0; {ks})
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Calibration process

From measurements:

Calibration required

Forward operator around the specular point (model):

oo = 7| R|?PDF (slope = 0; {rs})
1

For simplicity, here we used Gaussian with o* = mss
Should be better done, actual slopes’ statistics of the model
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Calibration process

2020-10-29_480_4 | 2020-10-29_533 8 2020-10-30_522_8
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oo values for tracks: 2020-10-29 480 _4, 2020-10-29 533 8, 2020-10-30 522 8
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Summary

« Preliminary studies to assess the potential of spaceborne GNSS-R ‘observables’ (o) for
assimilation into complex wave models acorss TC.

* Assimilation of o, rather than geophysical variables inverted from GNSS-R (wind, mss) is
preferred as

— GNSS-R is sensitive to a combination of variables:

— assimilation of o, moves all the assumptions at the model-side (thus consistent with and taking
advantage of the richness of the model).

* There is the need of calibration of the data, to ‘align’ it with the model. We suggest trackwise
calibration based on linear fit.

* This approach tested on a case study, TC Goni, 2020, 2D wave model [Kudryavtsev, Yurovskaya
& Chapron, 2021], initialized with S1 SAR-wind [IFREMERY].

« Good agreement between modelled o, and calibrated GNSS-R o,.

* Some ‘anomalies’ detected, where the GNSS-R data could ‘correct’ the model.
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