

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

EUMETSAT CECMWF

(รบรรค 🗆

The EO4ALPS Ecosystems project – ECO4Alps

Itziar Alonso

24/05/2022

ESA UNCLASSIFIED – For ESA Official Use Only

Consortium

Kaspar Schiess | Solenix Engineering GmbH | Switzerland Yann Voumard | Solenix Engineering GmbH | Switzerland Dr. Itziar Alonso | Solenix Italia srl Italy

Prof. Clement Atzberger | BOKU Wien | Austria Dr. Markus Immitzer | BOKU Wien | Austria Dr. Anja Klisch | BOKU Wien | Austria

Alexander Jacob | EURAC Research | Italy

Peter James Zellner | EURAC Research | Italy

Dr. Ruth Sonnenschein | EURAC Research | Italy

Alpine Regional Initiative (eo4alps)

Control C

Application oriented activities: support geoinformation needs relevant to the Alpine region

Users - Alpine convention & EUSALP

Alpine Convention: Regional environmental protection and management initiative

- Sustainable development
- Preservation of the alpine ecosystems
- **EUSALP:** European macro-regional strategy for the Alpine region (Endorsed by EU)
- Focus on alpine-specific challenges ensuring sustainable development.
- Relevance of protecting and enhancing biodiversity
- Preservation and maintenance of ecosystems and their services

ECO4Alps - project overview

- Characterisation of alpine ecosystems
 extent and changes
- Analysis of the resilience of alpine ecosystems to climate
- Direct and indirect impacts of natural hazards on alpine ecosystems

→ Development of 6 services integrated in a cloud environment

The Alpine Convention and EO4Alps – needs and services

→ THE EUROPEAN SPACE AGENCY

User-defined minimum mapping unit

and loss of biodiversity (flora and fauna).

1. Ecosystem mapping service

- European datasets (CLC, HRL) don't represent all ecosystem equally well
- Regional product, comparable across time and space (consistent, harmonized and updateable)

Service:

Need:

- Information on the spatial distribution of land cover
- Land cover classification legend addressing alpine ecosystems

Local land cover map

CORINE LC map

HR Layer forest and grassland

1. Ecosystem mapping service

Method: Multi-temporal classification of Sentinel-2 data based on spectral-temporal features and reference data Main products:

- Ecosystem map
- Land cover statistics

Additional outputs:

- Class probabilities (pmax)
- Accuracy assessment

Exemplary ecosystem map for the target year 2019

2. Forest disturbance service

Need:

- Changes in forest disturbance regimes
- Global datasets miss small-scale disturbances and do not provide temporal information
- European datasets (e.g. HRL) don't offer frequent updates

Service:

- Spatial information on forest cover changes
- Temporal information on the timing of the change event

Impact of the storm Vaia 28.-30.10.2018

2. Forest disturbance service

Method:

- BFAST for extraction of breakpoints related to forest ^U
 Disturbances
- Forest cover map for masking

Main products:

- Annual forest disturbance maps
- Upon request (small areas)

Additional products:

- Magnitude of deviation from fit Quality of Detection
- Number of valid observations Quality of Detection
- Forest Type / Forest Density / Altitude Thematic Interpretation

10

🖣 🔜 📲 📲 🚍 🖛 🛶 🛛 🖉 🚟 🚍 🖉 🖉 🗮 🚍 🚝 🚍 🛶 🚳 🍉 📭 😹 💶 ன 📾 🏣 🝁 🔹 The European space Agency

2. Forest disturbance service

11

→ THE EUROPEAN SPACE AGENCY

Exemplary windthrow patch caused by Storm Vaja 2018-10-28 (left) and detected breakpoints (right).

3. Forest phenology service

Need:

- Phenological autumn shifts in the Alps have not yet been studied in detail – studies indicate earlier end of season
- Impact on hydrological and climate systems

Differences in End-Of-Season (EOC) between "normal" years (2010-2014) and "dry" year (2015) detected by time series analysis of fAPAR showing that forests react to this more and more common climatic anomaly in the alpine region (BOKU master thesis)

Service:

- Spatial information on End of Season
- Trends on End of Season
- Quality of information

3. Forest phenology service

Methods:

- EOS calculation using NDVI time series (TIMESTAT)
- Multi-annual trend analysis (S2 + ...)
- Evaluate linkages to specific weather pattern (e.g. dry summer)

Main products:

- End-of-season
- End-of-season trend

Additional outputs:

- End-of-season quality
- End-of-season trend quality (p-value)

💻 📰 📲 🚍 💳 🛶 📲 🔚 📰 📰 📲 📰 💏 🔤 🔤 📲 🗮 🔤 🛶 🚳 🛌 📲 🗮 📰 🗰 🐂 👘 🔸 The European space agency

3. Forest Phenology Products : End of Season, Trend EOS · esa

4. Fire recovery service

Need:

- Widely unknown but important to assess forest ecosystem services and to ensure that forests can maintain their protective function (e.g. against avalanches)
- Hazard protection

Service:

- Forest recovery seasonal trajectory
- Forest recovery annual trajectory
- Quality

NDVI response after fire events showing differences related to tree species and fire severity (Viana-Soto et al., 2017)

📲 📰 💳 🕂 📲 🔚 📲 🔚 📲 🔚 🚛 👘 🚺 🐂 📲 💏 🔤 👘

4. Fire recovery service

Method:

- Selection of fire events
- Trend analysis on seasonal NDVI composites

Main products:

- Annual trajectory of forest recovery
- Seasonal trajectory of forest recovery

Additional outputs:

- Quality of annual trajectory
- Quality of seasonal trajectory

Season refers to: 1 - March April May, 2 - June, July August, 3 - September October November

5. Grassland management service

Need:

- Grassland management and ecological status of alpine grasslands are strongly linked
- Map grassland mowing frequency and timing of cuts
- No ready-to-use dataset available and mapping initiatives (e.g. Sen4CAP) require specific information of users (e.g. parcel information)

Service:

- Spatial information on the timing of grassland mowing events
- Annual frequency of mowing events

- Increase in fertilization
- Increase in mowing frequency
- Earlier mowing
- Loss of speciesrich meadows
- Loss of habitats

Examples of alpine meadows with different use intensity

5. Grassland management service

Method: Time-series thresholding techniques based on Sentinel-2 an Landsat 8 NDVI

Main products:

- Timing of mowing events
- Number of mowing events

Additional products:

- First mowing event before/after
- Mowing event quality information

→ THE EUROPEAN SPACE AGENCY

5. Grassland management service

→ THE EUROPEAN SPACE AGENCY

6. Grassland abandonment service

Need:

- Grassland abandonment (in particular the most important marginal grasslands) implies a severe risk of losing cultural ecosystem services (e.g. for tourism and human well-being) as well as biodiversity
- Tourism policy
- Biodiversity protection

Service:

- Spatial information on identified abandoned areas
- Quality

Results of principal coordinate analysis (PCO) of plant species composition of managed and abandoned grasslands in three test regions of Eastern Alps – Abandonment caused a marked decrease in species richness illustrating the important of regular mowing for maintaining species richness (Bohner et al., 2018)

6. Grassland abandonment service

Methods:

- Mask of grassland pastures will less than one mowing event identified.
- Abandonment index calculation

Main products: Grassland abandonment

Additional outputs: Quality of grassland abandonment

→ THE EUROPEAN SPACE AGENCY

21

Where are these services?

 $\mathbf{*}$

Integration with EODC - openEO

- ___ ■ ■ = ___ = ● - ■ ■ · ■ · ■ · ■ ■ ■ = += ___ • ■ • • ■ • ■ ■ · ■ · ■ · ■ · • THE EUROPEAN SPACE AGENCY

Current status

Task 1: User requirement consolidation

- Compile a comprehensive list of key stakeholders
- Inform stakeholder and user about Eco4Alps project
- Setup of a structured questionnaire
- Motivate stakeholder and users to participate in questionnaire (e.g. online workshop, personal contact)
- Provide feedback to stakeholder and users

Task 2: Service Portfolio and Chain Specification

Provide feedback to stakeholder and users

- Inform stakeholders and users about service implementation
- Contact users and stakeholders for reference data within calibration and demonstration site

3 services integrated

💻 🔜 📲 🚍 💳 🛶 🛛 🖉 🔚 📰 📰 📲 📰 🚔 🔤 🔤 🚱 🔤 📲 🗮 🔤 🖛 🚳 🌬 📲 🗮 📰 📾 🏣 🝁 🔹 The European space agency

Large scale outputs produced

Forest phenology – EOS 2020

🖣 🔜 📕 🚛 💶 🛶 🖉 🔚 🔚 🔚 🔜 👬 🔜 🛻 🚳 🍉 📲 🚼 💶 📾 🏜 🗰 🛊 🔸 🛨 the European Space Agency

25

Next steps

Task 4: Service delivery

- Invite stakeholder and users to use services
- Provision of user manual
- User support (technical and thematic)

Task 5: Service utility and uptake assessment

- Setup of a structured questionnaire
- 2 regional user workshops

💳 🔜 📲 🚍 💳 🛶 🛯 🗮 🔙 📲 🔚 📲 💳 🛻 🔯 🍉 📲 🗮 🖬 🖬 ன 🍁 🔹 🗰 🛶

Conclusion

- Respond to needs of Alpine stakeholders (Alpine Convention, EUSALP)
 - Characterise changes of alpine ecosystems extent and condition
 - Analyse resilience of alpine ecosystems to climate
 - Evaluate direct and indirect impacts of natural hazards on alpine ecosystems
- 6 services with at least 30m resolution integrated with openEO (available soon)

1. Ecosystem mapping 2. Forest disturbance 3. Forest phenology 4. Fire recovery 5. Grassland management 6. Grassland abandonment

- On demand define AOI and time
- Regionally tailored, adapt to specific temporal needs (frequent updates)

💳 💶 📲 🚍 💳 🛶 📲 🔚 📰 📰 📲 🔚 📲 💳 🛶 👰 🛌 📲 🚼 🖬 🖬 ன 🖗 → The European space Agency

Thank you!

Poster session today: <u>An Earth Observation based Grassland Mowing</u> <u>Detection Service for the Alpine Region</u> E3.01 Alps Regional Applications and Science

💳 🔜 📲 🚍 💳 🛶 📲 🔚 🔚 🔚 📲 🔚 📲 🔚 🛶 🚳 🛌 📲 🚼 🖬 🖬 📾 🛶 🛊 → The European space Agency