

Evaluation of atmospheric water vapour in CMIP6 models using the ESMValTool

ESA Living Planet Symposium, 24.05.2022

Katja Weigel^{1,2}, Lisa Bock², Birgit Hassler², Axel Lauer², Manuel Schlund², and Veronika Eyring^{2,1}

¹University of Bremen, Institute of Environmental Physics (IUP), Bremen, Germany ²Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

Katja Weigel weigel@iup.physik.uni-bremen.de

Outline

- ESMValTool
- > Data
- > Analysis for water vapour path:
 - > Trends
 - Time series
- > Analysis for specific humidity profiles:
 - > Vertical profiles
 - Zonal mean climatology

Scientific documentation

- Tool for fast and easy routine evaluation and analysis of Earth system models including provenance records for all results (traceability and reproducibility)
- Well-established analysis based on peer-reviewed literature
- Many diagnostics and performance metrics covering **different aspects of the Earth system** (dynamics, radiation, clouds, carbon cycle, chemistry, aerosol, sea-ice, etc.) and their interactions
- Extensive documentation (user guide, peer-reviewed papers)
- Was used in support of production of a subset of figures of the IPCC WGI AR6

Website: https://www.esmvaltool.org/ Code: https://github.com/ESMValGroup/ESMValTool Documentation: https://docs.esmvaltool.org/ Tutorial: https://esmvalgroup.github.io/ESMValTool_Tutorial Righi et al., GMD, 2020 Technical overview

Eyring et al., GMD, 2020 **Large-scale diagnostics**

Lauer et al., GMD, 2020 Diagnostics for emergent constraints and future projections

Weigel et al., GMD, 2021 Diagnostics for extreme events, regional and impact evaluation

International ESMValTool development team

- 17 funded projects / 63 institutions
- 203 developers

Observation and reanalysis data

Data Set	ERA5	ESA-CCI water vapour	RSS (Remote Sensing Systems)	SWOOSH (Stratospheric Water and Ozone Satellite Homogenized)
Туре	Reanalysis	Merged near-infrared and micro-wave imager observations	Merged microwave radiometer data	Merged limb sounding and solar occultation satellite data
Version		CDR-1 V3.2 CDR-2 V3.1 (preliminary)	V7	V2.6
Grid	0.25°	0.05 and 0.5°	1°	5° latitude, zonal mean 31 vertical level
Time	hourly, monthly 1979-present	daily, monthly 07/2002-2017	monthly 1988-present	monthly 1984-present
Variables shown	Water vapour path Specific humidity	Water vapour path	Water vapour path	Specific humidity
Source	https://www.ecmwf.int/en/forecasts/data sets/reanalysis-datasets/era5 Hersbach et al., (2020)	https://climate.esa.int/en/projects/water- vapour/data	https://www.remss.com/mea surements/atmospheric- water-vapor/tpw-1-deg- product/ Wentz (2015)	https://csl.noaa.gov/groups/csl8/swo osh/ Davis et al. (2016)

Coupled Model Intercomparison Project (CMIP)

- CMIP began in 1995 under the auspices of the Working Group on Coupled Modelling (WGCM) which is part of the World Climate Research Program (WCRP).
- Objective of CMIP: to better understand past, present and future climate changes arising from natural, unforced variability or in response to changes in radiative forcing
- Analyses are based on a multi-model context
- Coordinated experiments to estimate the influence of the different uncertainties.
- Important goal of CMIP is to make the multi-model output publicly available in a standardized format

CMIP5 and CMIP6

Universität

Bremen

- Latest model generations
- 59/126 models from 31/48 institutions/consortia registered

- Trends in water vapour path over ocean
- Update of Figure 3.12 from IPCC AR6 WG I (Eyring et al., 2021, Chapter 3) based on analysis of Santer et al., 2021
- Histogram of trends for 23 CMIP5 and 19 CMIP6 models, fit with kernel density estimation
- All data sets show positive trends as expected for rising temperatures
- The trends are higher for CMIP model data
 - RSS 1.4%/dec; ERA5 1.5%/dec
 - CMIP5 1.7%/dec; CMIP6 1.9%/dec
- RSS and ERA5 trends lay within the multimodel range
- Quality filter for RSS data applied to all data sets to unify sampling

Quality filter effect: with (left) and without (right) quality filter for RSS data

- Filter applied to all data sets to account for sampling effects
- > Mainly RSS data change: Improved quality of filtered data, no additional sampling issue

Water vapour path trends, 50°S-50°N

ESACCI: right panel for **2003-2017**, including ESACCI CDR-2 water vapour path

- > Trend distribution less distinct for shorter time (15 vs. 42 years), however all data agree on positive trends
 - Higher positive trend for ESACCI CDR-2 water vapour path data compared to ERA5 and RSS

Water vapour path time series, 50°S-50°N, 2003-2017

Time series of water vapour path over ocean

Institut

für Umweltphysik

- Masking all data to the same sampling
- CMIP models (thin lines), CMIP5 (thick blue) and CMIP6 (thick turquoise) multi-model mean, ERA5 reanalysis (thick red) and ESA-CCI CDR-2 data (thick orange)
- CMIP data on average higher than ERA5 and ESA-CCI CDR-2 data, but overall good agreement
- CMIP6 lower then CMIP5, but CMIP5 annual cycle more similar to reanalysis/observations

Water vapour path time series, 90°S-30°S, 2003-2017

- Time series of water vapour path over land
- Masking all data to the same sampling
- CMIP models (thin lines), CMIP5 (thick blue) and CMIP6 (thick turquoise) multi-model mean, ERA5 reanalysis (thick red) and ESA-CCI CDR-2 data (thick orange)
- CMIP data on average higher than ERA5 and ESA-CCI CDR-2 data, but overall good agreement

Water vapour path time series, 90°S-30°S, 2003-2017

- Time series of water vapour path over land
- Masking all data to the same sampling
- CMIP models (thin lines), CMIP5 (thick blue) and CMIP6 (thick turquoise) multi-model mean, ERA5 reanalysis (thick red) and ESA-CCI CDR-2 data (thick orange)
- CMIP data on average higher than ERA5 and ESA-CCI CDR-2 data, but overall good agreement
- Sampling of CDR-1 effects time series

Specific humidity profile 30°S – 30°N, 1985-2005

- Vertical profiles of specific humidity for 9 CMIP5 (left) and 13 CMIP6 (right) historical runs, ERA5 reanalysis data and SWOOSH
- > CMIP5 profiles stop at 10hPa, higher variability of stratospheric water vapour profiles for CMIP5
- CMIP5 and CMIP6 multi-model mean stratospheric water vapour lower than ERA5 and SWOOSH
- More vertical structures in SWOOSH compared to ERA5, difference small

Universität

Bremen

Specific humidity zonal mean, 1985-2005

Zonal mean with TropopauseSpecific Humidity

CMIP6

50 -

Universität

Bremen

sssure [hPa]

ق 150 ع

200

250

-80

-60

-40

-20

0

Latitude

20

40

60

80

Zonal mean specific humidity and cold point tropopause, 1985-2005

Institut

für Umweltphysik

 CMIP5 (upper left) and CMIP6 (upper right) historical runs multi-model mean

Katja Weigel

1.0000

0.7499

- ERA5 (lower left), SWOOSH (lower right) with ERA5 cold point tropopause
- CMIP5 and CMIP6 similar
- Structures in stratospheric water vapor are not seen in multi-model mean
- Differences in Tropopause region, for polar regions also between ERA5 and SWOOSH

Summary

- ESMValTool: Tool to facilitate comprehensive and routine evaluation of Earth system models with observations
- Publicly available (https://www.esmvaltool.org/) developed in an international community effort
- > Comparisons of CMIP models with observational / reanalysis atmospheric water vapour:
 - Water vapour path:
 - Positive trends over near global ocean in CMIP models as well as RSS and ERA5, within multi-model range, higher for CMIP models (IPCC AR6 WGI, Eyring et al., 2021, Ch. 3)
 - Time series: CMIP models higher than observations/reanalysis
 - Quality filters and sampling effects need to be considered
 - Specific humidity profiles:
 - > Lower water vapour in the tropical stratosphere for CMIP models
 - > Differences in Upper Troposphere Lower stratosphere

Institut für Umweltphysik

:

ESMValTool and ESMValCore

1.0000

0.8875

0.7750

0.6625

0.5500

0.4375

0.3250

- 0.2125

0.1000

0000

0.8875

0.7750

0.6625

0.5500

0.4375

0.3250

0.2125

0.1000

Specific humidity tape recorder, 1985-2005

- Zonal mean specific humidity 30°S-30°N, 1985-2005
- CMIP5 (upper left) and CMIP6 (upper right) historical runs multi-model mean
- ERA5 (lower left)SWOOSH (lower right)
- Many structures in stratospheric water vapor are not seen in multimodel mean
- Differences in tape recorder also between ERA5 and SWOOSH

Evaluate water vapour short wave absorption

Sensitivity of solar absorption to variations in atmospheric water vapour varies considerably among models due to differences in radiative transfer parameterizations

Universität

Bremen

- Models with more modern short wave absorption schemes agree better with observations
- Update from version Lauer et al. (2020) based on analysis of DeAngelis et al. (2015)
- Width of horizontal shading/vertical dashed lines: ^G uncertainties of the ratio (95% confidence interval of ^G the regression slope to the rsnst versus prw curve)
- CMIP5 data sets compared to ESACCI CDR-2 data from 2003 to 2011 (red, instead of ERA-Interim and SSMI 2001-2009, black), water vapour path over tropical ocean
- ESACCI CDR-2 agrees with ERA-Interim and SSMI, smaller confidence interval

18