

Pushing the limits of limb scatter observations of UTLS water vapour: Spatial Heterodyne Observations of Water (SHOW)

Jeffery Langille¹, Adam Bourassa², Doug Degenstein², Daniel Zawada², Yi Huang³, Jing Feng³, Xun Wang³, Landon Rieger², Jean-Pierre Blanchet⁴, Yann Blanchard⁴, William Ward¹

¹ UNB, ² USASK, ³ McGill, ⁴UQAM

The need for dense sampling of UTLS water vapour

- UTLS water vapour is coupled to climate and weather in a manner that is only poorly understood. Plays an important role cloud dynamics and aerosol processing
- However, important processes near the tropopause are not resolved by current satellite sensors or in models.
- Observing limb scattered radiance in a vibrational band of water provides high sensitivity to low UTLS water concentrations. Imaging the limb without scanning facilitates dense sampling.

ESA Living Planet Symposium 2022

HAWC: a cohesive mission

Reff: 40nm to 400nm

Δ

Spatial Heterodyne Observations of Water (SHOW)

- Field widened Spatial Heterodyne Spectrometer (SHS) configured to image the limb radiance without scanning
- The SHS technique achieves a high spectral resolution combined with a large throughput without scanning
- Vertically resolved images of the limb radiance are obtained with each frame which are then inverted to extract the vertical water vapour profile.
- Allows for dense (vertical and along-track) sampling of the water distribution

Iterations

Apriori Retrieval

(a)

Water retrieval - July 18

20 30 Water [ppm]

Water profile

10

5

Phase 0 instrument design

Parameters	Values	Unit
Spectral Range	1364 to 1368	nm
Spectral Sampling	0.0248	nm
Unapodized Resolution	0.03	nm
Max FOV Height	40	km
Min FOV Height	0	km
Vertical Sampling	125	meters
Vertical Resolution	250	meters
Horizontal Sampling	1.5	deg
Along Track Sampling	2 per 2	images / s
Horizontal Image Size	512	pixels
Vertical Image Size	327	pixels
Troughput per pixel	7.07E-07	cm² sr
Mass	59	kg
Volume	51×56×90	cm ³
data Rate	3.4	Mbps
Volume per orbit	2400	MB
Lifetime	3 to 5	years

End-to-End Simulator

- Input scenes developed from CALIPSO/OMPS and EarthCARE are used in conjunction with RTMs to simulate realistic scenes for the instrument models.
- Instrument models are used to turn radiance fields into simulated Level 1 measurements.
- Retrievals are performed using synthetic Level 1 products to produce Level 2 products.
- Synergy is studied with synthetic retrieval products.

Clear sky retrieval

Parameter	Altitude Range	V res goal	V res Th	H res goal	H res Th	Precision Goal/Th	Accuracy Goal/Th
	(km)	(km)	(km)	(km)	(km)	%	%
UTLS	8 -25	0.5	1	50	200	5%/10%	5%/15%
Stratosphere	25-30	1	2	200	400	5%/10%	5%/15%

Impact of Aerosol and Cloud

Optimizing the Forward Model

Upwelling

Apply high altitude normalization and include a baseline correction in the state vector (either aerosol or air density)

Speed

Apply a high-resolution single scatter approximation to speed up the radiative transfer calculations

- Determine number of required wavelengths to accurately simulate the fraction of SS/MS radiance
- Only perform MS calculations at required wavelengths

Test Scenes

Thin cloud and fine aerosol

Deep Convection (GEM MACH)

11

Example Retrieval using the CALIPSO/OMPS scene

Example Retrieval using the GEM scene

Improvement to SHOW retrieval

Convective Overshooting

Yi Huang & Xun Wang

45

- 40

35

30

15 - 10

5

45

- 40

- 35

- 30

20

- 15

- 10

5

25 Audd

-25 Audd

¹⁴

Anomaly

Yi Huang & Xun Wang

Thank you!