

Comparing Remotely Sensed Land Surface Temperature

and Climatic Reanalysis for invasive mosquitoes' mechanistic model

ESA Living Planet Symposium

24/05/2022

Daniele Da Re – ELIC (UCLouvain)

Matteo Marcantonio – ELI (UCLouvain)

Guillaume Lacour - Altopictus

Sophie O. Vanwambeke – ELIC (UCLouvain)

Number of suitable months with ZIKV R0(T) > 0

Ryan et al. 2020, Global Change Biology

Number of suitable months with ZIKV R0(T) > 0

$$R0 = R0_{HV}R0_{VH} = \sqrt{k^2 \frac{\beta_{HM}\beta_{MH}}{\frac{1}{H_{infPer}}\mu_v} \frac{N_V}{N_H} \frac{\frac{1}{EIP}}{\frac{1}{EIP} + \mu_v}}$$

Ryan et al. 2020, Global Change Biology

Number of suitable months with ZIKV R0(T) > 0

$$R0 = R0_{HV}R0_{VH} = \sqrt{k^2 \frac{\beta_{HM}\beta_{MH}}{\frac{1}{H_{infPer}}\mu_v} \frac{1}{N_H} \frac{1}{\frac{1}{EIP}}}{\frac{1}{H_{infPer}}\mu_v} N_H \frac{1}{\frac{1}{EIP}} + \mu_v}$$

Ryan et al. 2020, Global Change Biology

Probability of **Ae. aegypti** occurrence

Kramer et al. 2015, eLife

dynamAedes

A unified population dynamic modelling framework for invasive Aedes species

Da Re et al. 2022, *Parasite&Vectors*, in press

• Four Aedes species: Ae. aegypti, Ae. albopictus, Ae. japonicus and Ae. koreicus

- Four Aedes species: Ae. aegypti, Ae. albopictus, Ae. japonicus and Ae. koreicus
- Temperature-dependent beta regressions for development and mortality rates

- Four Aedes species: Ae. aegypti, Ae. albopictus, Ae. japonicus and Ae. koreicus
- Temperature-dependent beta regressions for development and mortality rates
- Photoperiod-dependent functions for egg hatching and diapausing eggs production

- Four Aedes species: Ae. aegypti, Ae. albopictus, Ae. japonicus and Ae. koreicus
- Temperature-dependent beta regressions for development and mortality rates
- Photoperiod-dependent functions for egg hatching and diapausing eggs production
- Three different spatial scales

- Four Aedes species: Ae. aegypti, Ae. albopictus, Ae. japonicus and Ae. koreicus
- Temperature-dependent beta regressions for development and mortality rates
- Photoperiod-dependent functions for egg hatching and diapausing eggs production
- Three different spatial scales
- Active and Passive dispersal (parametrised from MRR and scientific literature)

https://prvectorcontrol.org/

Species — Ae. aegypti — Ae. albopictus — Ae. japonicus — Ae. koreicus

Spatial scales

Local scale (spatial resolution < 1km)

Weather station scale

Ae. albopictus regional 2015-2020 model: percentage of successful introductions

Da Re et al. 2022, *Parasite&Vectors*, in press

AUC: 0.874 (0.867-0.880)

Limitations of the dynamAedes predictions with ERA5

Inaccurate predictions in topographically complex landscapes

Test temperature dataset with higher spatial resolution

Different temperature dataset are available

Different temperature dataset are available

Different temperature dataset are available

MODIS LST

2019-05-15

ERA5Land skt ~9 km

ERA5Land skt downscaled 1km

Temperature (°C)

30

MODIS LST 1km

Weather station-pixel comparison

Weather station

The downscaling approach introduce some variability with respect to the weather stations observations

Dataset — ERA5-Land skt — ERA5-Land skt downscaled — MODIS LST

But we are comparing skin temperatures with 2m air temperatures

Percentage of successfull introduction

	4			
0.00	0.25	0.50	0.75	1.00

[0, 0.16]

[0, 1]

[0, 0.66]

ERA5Land skt ~9 km

ERA5Land skt downscaled 1km

Percentage of successfull introduction

	1			
0.00	0.25	0.50	0.75	1.00

MODIS LST 1km

0.00	0.25	0.50	0.75	1.00

Final thoughts

Spatial scale and the choice of the temperature dataset matters!

Final thoughts

Spatial scale and the choice of the temperature dataset matters!

Usage and Popularity: MODIS LST > ERA5Land

Spatial resolution: MODIS LST > ERA5Land (native)

Temporal resolution: MODIS LST < ERA5Land

Take home message

Using a downscaling approach

dynamAedes informed with ERA5-Land performed better!

Received: 5 July 2018 Accepted: 4 September 2018

DOI: 10.1111/2041-210X.13093

RESEARCH ARTICLE

Methods in Ecology and Evolution ECOLOGICAL SOCIETY

Microclima: An R package for modelling meso- and microclimate

Ilya M. D. Maclean¹ | Jonathan R. Mosedale¹ | Jonathan J. Bennie²

APPLICATION

MCERA5: Driving microclimate models with ERA5 global gridded climate data

David H. Klinges 🔀 James P. Duffy, Michael R. Kearney, Ilya M. D. Maclean

LST product typ	es					
Hourly LST 10-day	LST Daily Cycle	10-day LST TCI	Cop	pernicus Gl	obal Lan	d Servic
Access Algorithm	Quality Applic	cation Technical [Documents	g bio-geophysical products	s of global land surfa	се
Product version	Access	Sensor		Temporal coverage	Spatial information	Timeliness
2	Product portal	Imagers on-board geostationary satellites		Jan 2021 - present, hourly	Global, 5km resolution	Within 4 hours
1	Product portal	Imagers on-board geostationary satellites		Oct 2010 - Jan 2021, hourly	Global, 5km	Within 4 hours

UCLouvain

Thank you

Fraternité

Predicted values distribution

Ecological Informatics Volume 61, March 2021, 101180

Will the yellow fever mosquito colonise Europe? Assessing the re-introduction of *Aedes aegypti* using a process-based population dynamical model

Daniele Da Re ª 옷 쩓, Diego Montecino-Latorre ^b, Sophie O. Vanwambeke ^a, Matteo Marcantonio ^c 옷 쩓

Diapausing eggs and photoperiod

Lacour et al., 2015, *PlosOne* Krupa, Henon & Mathieu et al., 2021, *Parasite*

Diapausing eggs and photoperiod

Lacour et al., 2015, *PlosOne* Krupa, Henon & Mathieu et al., 2021, *Parasite*