

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

EUMETSAT CECMWF

A MULTI-MODAL SMALL SATELLITE INSTRUMENT FOR MONITORING PHYTOPLANKTON

Ben Stern

24th May 2022

ESA UNCLASSIFIED – For ESA Official Use Only

Introduction

- ESA study to develop concepts for future passive sensing optical Earth observation missions using small (<150Kg) satellites – tailored ECSS compliant
- Instrument concept for covariance analysis of SST and chlorophyll, an indicator of phytoplankton population and ocean health
- Team
 - S/C System: SSTL
 - User requirements, simulated instrument assessment & retrieval capability:
 - Bob Brewin University of Exeter, Joshua Van der Hey University of Leicester

SSTL Optical Payload Group significant Earth Observation experience:

- CHRIS (2001) still operating now on PROBA-1 (SSTL OPG was part of SIRA)
- TROPOMI (2017) on S-5P
- NIRSpec IFU for JWST (delivered in 2006, launched 2021)
- EarthCARE MSI due for launch 2023

Science Case

Phytoplankton

- Half of all photosynthesis on the planet, carbon sink
- Represent biomass, and are very crucial as a measure as they drive productivity in the ocean
- Sensitive to temperature changes in seawater
- Satellite imagery + in-situe measurement

→ THE EUROPEAN SPACE AGENCY

Science case

- Global Climate Observing System (GCOS) recommends (that daily temporal coverage for applications like climate studies is necessary (WMO 2016)
 - Covariance analysis of sea temperature and chlorophyll: links phytoplankton population change to rising sea temperatures direct impact of climate change on ocean health

- Phytoplankton are a good indicator of ocean health
- Satellite primary production models (synthesis of organic compounds) require information on phytoplankton biomass from ocean-colour

**Brewin et al (2015)

**

Science case

•

- Phytoplankton physiology and resources can be inferred from SST
- Combining two data streams can be used to improve retrievals in each
- Simultaneous estimates of Sea Skin Temperature and Ocean Colour helps with retrievals in both data streams:
 - Ocean colour helps improve emissivity estimates in turbid waters
 - SST can improve phytoplankton type retrievals from ocean colour
 - Synergistic use of Sea Skin Temperature and Ocean Colour can improve understanding and retrievals of air-gas exchange:
 - SST modulates transfer of gases (e.g. CO_2) between ocean and atmosphere. Ocean colour helps quantify flux of gases between ocean and atmosphere

Removal of atmospheric effects of aerosols gives better ocean colour products. Multiangular spectro-polarimeters provide more precise information about absorbing aerosols (Aerosol Optical Depth), which are prevalent over large oceanic areas:

• Better ocean colour product than NIR waveband data used in atmospheric model

💳 🔤 📕 🚼 🚍 🔚 🗮 💳 🔜 📕 🔚 💳 📲 📲 🔚 🔤 🔤 🚳 🔽 📕 🕷 🛨 🖬 💳 🔤 👘 → The European space age%()

Oracle satellite

- SSTL 35 year heritage: COTS design (tailored) ECSS compliant satellite
- Oracle satellite: SSTL-Micro platform (ESA Scout HydroGNSS)
- Orbit: SSO at 561km
- Volume: 0.4m³
- Data-rate: >160Mbps
- Total wet mass: 77kg
- Mission lifetime: 7 years

💻 🔜 📲 🚍 💳 📥 📲 🔚 🔚 🔚 📲 🔚 📲 🔚 🚛 🚳 🛌 📲 🚼 🖬 🖬 🖛 👘

Oracle payload

- Oracle payload consists of three instruments:
 - Oracle-C: multi-spectral pushbroom colour imager
 - Oracle-T: multi-spectral pushbroom thermal imager
 - Oracle-A: multi-spectral polarimetric imager
- Simultaneous imaging with same swath
- First time on a small satellite

Parameter	Oracle-C	Oracle-T	Oracle-A	
Focal length (mm)	30.8	31.7	6.2	
F-number	3.3	2.0	5.1	
ACT pixels	11520	3840	1280	
GSD (m)	100	300	900	
Swath (km)	1152	1152	1152	
Multispectral bands	8	3	11*	
Mass (Kg)	8.0 7.8		5.7	
Viewing angles	-	-	7	
*polarised radiance				

Oracle instrument architecture

All imagers use:

- Common, dual redundant SSTL Ceria Front-End Electronics (FEE)
- SSTL Services Module, dual redundant
- Individual internal calibration

Total power consumption: <61W

Oracle-C Imaging Mode

Pushbroom, fixed bands

💳 🔜 📲 🚍 💳 🛶 📲 🔚 🔚 🔚 📲 🔚 🔚 🔤 🛻 🚳 🍉 📲 🚼 🖬 🖬 📾 🎃 🍁 🖬

- 3 self-contained sub-imagers mounted across track for increased swath
- COTS detectors format size limit
- Pushbroom imaging requires off-chip TDI with 123 along track pixels
- Internal calibration device used simultaneously by all 3 sub-imagers and moved in/out of field of view

Parameter	Value	
Focal length	30.8mm	
F-number	3.3	
ACT pixels	11520	
GSD	100m	
Swath (at 561km)	1152km	
Multispectral bands	8	
Frame rate	76Hz	

Oracle-T Imaging Mode

💳 💶 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 📲 📲 🚍 🛶 🚳 🍉 📲 🚼 💶 📾 📾 🌬 🔶 → The European space agency

- Consists of 4 self-contained sub-imagers mounted across track for increased swath
- Internal calibration device is used simultaneously by all 4 subimagers, moved in/out of field of view, to counteract drift
- Pushbroom imaging requires off-chip TDI with 60 stages (along track pixels)

Parameter	Value		
Focal length (mm)	31.7		
F-number	2.0		
ACT pixels	3840		
GSD (m)	300		
Swath (km)	1152		
Multispectral bands	3		
Frame rate (Hz)	25		

Oracle-A Imaging Mode

Seven observation angles

💳 🔜 📲 🚍 💳 🛶 📲 🚆 🔚 📰 🔚 📲 🔚 🔚 🔤 🛶 🚳 🍉 📲 🚼 🛨 📰 📾 🏣 🍁 🔹 the European space agency

Oracle-A 8 Bands

8 Fixed Spectral Bands

Oracle-A

- Calibration device moves in/out of field of view prior to retrieval session
- Operation is same as POLDER/3MI (Adeos 1/2 / Parasol) rotating filters

Parameter	VNIR	SWIR
Focal length (mm)	6.8	6.2
F-number	5.6	5.1
ACT pixels	1280 (2x binned)	1280
GSD (m)	900	900
Swath (km)	1152	1152
Multispectral bands**	9*	3*
Frame rate (Hz)	9	9

*910nm is in both bands to allow cross-correlation **some bands are polarised same as 3MI

Viewing angles	-40°, -30°, -20°, nadir, +20°, +30°, +40°
Polarisation angles	-45°, 0°, +45°
Polarisation sensitivity	0.976

Oracle performance summary

- SNR for Ocean colour optical bands of >417 is sufficient, Oracle A atmospheric
- Radiometric accuracy <5% sufficient, after calibration device 'pre-devs'
- Fits into SSTL-42: mass, size, data Tx and power consumption

4000km imaging per orbit (600s)

Parameter	Oracle-C		Oracle-T		Oracle-A	
	Requirement	Modelled	Requirement	Modelled	Requirement	Modelled
GSD (at 561km SSO)	100m	100m	300m	300m	900m	900m
Multispectral bands	8	8	3	3	11	11
Min. MTF at Nyquist	0.1	0.17	0.1	0.12	0.1	0.31
Min. SNR	400	417*	-	-	200	261**
Max. NETD @ 300K	-	-	0.5K	0.5K	-	-
Polarisation sensitivity	-	< 0.07	-	-	>0.95	0.97
Radiometric accuracy	5%	13%	5%	10%	5%	15%
						*OLCLL ref

**3MI Lref

User assessment

- Chlorophyl (Chl) concentration, Particulate Organic Carbon (POC) concentration and microplankton Chl estimated using the ocean colour models to asses expected changes in ocean colour product uncertainty
 - OC3 (SeaWiFS) algorithm
 - Brewin Microplankton Chl algorithm
 - Stramski POC algorithm
- Model parameters varied by producing a Gaussian probability distribution and assumed 5% uncertainty in model parameters,
- Ocean colour products are good, i.e. relatively small uncertainty for most of the range in all three

Oracle orbit and coverage

 Global coverage requires 16-satellite constellation at 561km SSO for 8 evenly spaced sub-daily accesses

Conclusions

- GCOS high temporal resolution achieved by 16-satellite constellation allows 8 regular daily accesses globally, provides sub daily datasets
- Quality requirements met: ocean colour SNR >400, TOA brightness uncertainty <0.5k
- Affordable constellation could provide complimentary datasets with temporal coverage
- Better understanding of ocean health via examination of phytoplankton populations Next steps: expand work to derisk calibration approach and algorithms for L2 products, validate system design and progress with partners

Thank you

Ben Stern bstern@sstl.co.uk

🏏 @SurreySat 🞯 @surreysatellites

ESA UNCLASSIFIED - For ESA Official Use Only

