

The MicroCarb mission, an innovative pathfinder to CO₂ monitoring LPS22 23-27 May 2022

Laurie Pistre on behalf of MicroCarb team

MicroCarb will enforce the CO₂ global monitoring continuity

cnes .

Organization

- In the context of the COP21 climate conference, France decided to kick-off the MicroCarb project in 2016
- > ANR (Agence National de la Recherche) and SGPI (Secrétariat Général Pour l'Investissement): PIA (Plan d'Investissement Avenir) funding

Mission overview

Measurement of CO₂ concentration

- Sampling mission (not imaging)
 - Swath limited (13 km)
 - Resolution ~ 40 km2 (at nadir)
- Accuracy (XCO2)
 - Bias < 0,1 ppm (goal), 0.2 ppm (target) (NB: 0,1 ppm = 0.025% as mean is 400ppm)
 - Random < 0,5 ppm (G) , <1,5ppm (T) (NB: 1 ppm = 0.25%)
- > Performances similar to OCO with a more compact (/3) instrument

Compatibility with a microsatellite

- > Use of Myriade classique
- Satellite < 200 kg</p>
- Orbit
- > SSO, 650 km, 22h30

Operations

- Launch date: 2023
- Life duration: 5 years

Operating modes

Pointing and Calibration System (PCS): 1-axis scanning capability in the ACT direction of $\pm 35^{\circ}$ and calibration lamps

- Science nominal modes
 - Nadir (lands)
 - Scan (lands to decorrelate footprints)
 - Glint (ocean)
 - Offnadir target
- Probatory modes
 - City
 - Region
- Calibration modes
 - Target (L2 validation)
 - Calibration : sun, lamp, shutter, cold space, moon, ground laser...
 - Limb for 1.27µm airglow

MicroCarb measurement

- MicroCarb principle: retrieval by measurement of the CO₂ absorption of reflected sunlight using several highly resolved spectra in visible and near-infrared region (several spectral bands)
- CO₂: 1.6 μm & 2.04 μm
- O₂: 0.76 μm & 1.27 μm
- Imager
- Imager FOV > 2 * Sounder FOV
- Resolution ~120m x 150m
- Band 550 700 nm

- CO_2 absorption lines spectrum, near 1.6 μ m
- High spectral and radiometric accuracies, with low signal levels, calling for accurate on-ground calibration and high in-flight stabilities

 Figure of
 0.31
- > Figure of merit p is a combination of:
 - Signal to Noise Ratio (SNR)
 - Spectral Resolution (R)
 - BandWidth (BW)
- > Detector temperature 150K, spectrometer temperature 240K, passive cooling

Figure of Merit (p)	0.31
R	~26000
FWHM	>2.7pixels
SNR	Btw 230 (B3) and 500

Instrument compact design: only one detector

The instrument is based on an innovative concept permitting the acquisition of the spectral bands using a single telescope, spectrometer and detector, covered by an **Airbus Defence & Space** (ADS) patent.

Detector

Band Br

ax

Spatial

B3

B4

B2

Spectral axis

2D image of the each spectrum on detector

All bands on a unique NGP detector 1000pixels

Spatial axis

Spectrometer principle

- Spectral bands multiplexing by the grating, each band corresponding to a different diffraction order, between 15 and 40
- Echelle grating of ~60 grooves/mm in near-Littrow configuration
- Double-pass TMA compact spectrometer with 4 slits

Configuration at detector level

- One spectrum: about 1000 pixels in λ direction
- ACT field: ~100 pixels in the x direction
- Band separation: ~150 pixels in the x direction
- On-ground slit instantaneous: 13.5km ACT * 0.65km ALT

Several FOVs per spectral band Binning → 1 spectrum per FOV

Instrument compact design: only one detector

Split-pupil telescope

Alignment of the spectrometer ••• slits on the same Earth point by 4 Pupil Separation Prisms (PSP), placed at the telescope entrance pupil

B3

- Possible only with multi-pupil configuration of the telescope •••
- Principle applicable to any number of spectral bands, with large flexibility on sub-pupil shape and dimensions •

© ADS

Overall instrument architecture

© ADS

Compact instrument:

Mass	<80kg
Power	50W
Volume	600 x 500 x 1100 mm ³

Instrument AIT Activities

- Integration considering very compact instrument was a success
- Instrument final alignement in between telescope, spectrometer and detector achieved
- EMC and mechanical tests on-going

Spectro

Archi

MLI

Telescope

PCS

On Ground Instrument calibration: Instrument AIT conclusion

Link ground - flight

0

12) © cnes

13 © cnes

Notional Cal/Val Plan (2/2)

- Typical expected duration : 1 year
- ➤ Launch + 6 months → Launch + 12 months
 - Data delivered to MAG
 - L2 validation and bias charaterization (CNES + MAG)
- Operational comparisons for massive statistics
 - To TCCON network (target and offnadir modes)
 - To CAMS CO2 model
 - Inter-comparison to other missions
- Regular measurements
 - EM27
 - AirCores on ballons
- Campaigns
- Currently one MAGIC campaign per year which combines on-ground, ballons and airplanes measurements
- Instruments:
 - EM27
 - AirCores on balloons
 - AMULSE on balloons
 - Aircraft (Picarro on Falcon)
 - CHRIS
 - If possible : ICOS and TCCON

Saturday 8 March 2014 00UTC MAC Oil Foresast I=000 VT: Saturday 8 March 2014 00UTC Mean column CO2 drymolar fraction [ppm]

> Results of Falcon and AirCore from MAGIC 2018

a

Progress

- Next challenges:
 - Instrument performances tests in thermal vacuum conditions
 - Satellite AIT
 - Wait for co-passenger on Vega-C end 23 or beginning 24
 - Cal/Val

Thank you for your attention !