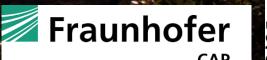
Working towards spaceborne lidar with wall-towall coverage for bare-Earth topography and vegetation change mapping: Small-sats, deployable optics and novel laser sources

University of Edinburgh: Fraunhofer Centre for Applied Photonics:

UK Astronomy Technology Centre: Resilience Constellation Management Ltd.: Space Flow Ltd.:

University of Strathclyde:

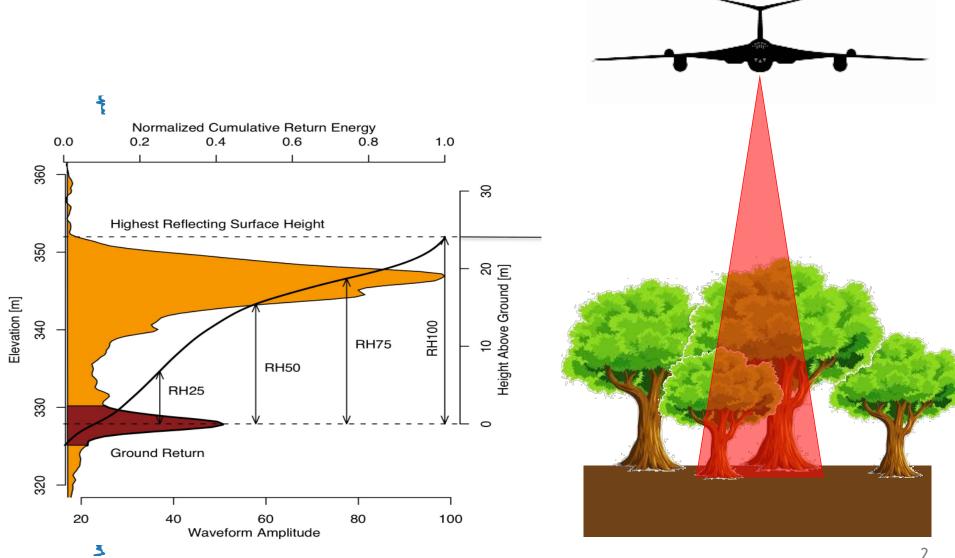


Steven Hancock, Johannes Hansen, Ian Davenport, Euan Mitchell, Iain Woodhouse, Kristina Tamane Jack Thomas, Emma Le Francois, Gerald Bonner, Haochang Chen, Paul McCartney, Ludwig Prade, James Morris Patrick Smith, Stephen Todd, Heather Bruce, David Lunney, Donald Mcleod

Richard Tipper, Andy Shaw, Jess Roberts

Callum Norrie

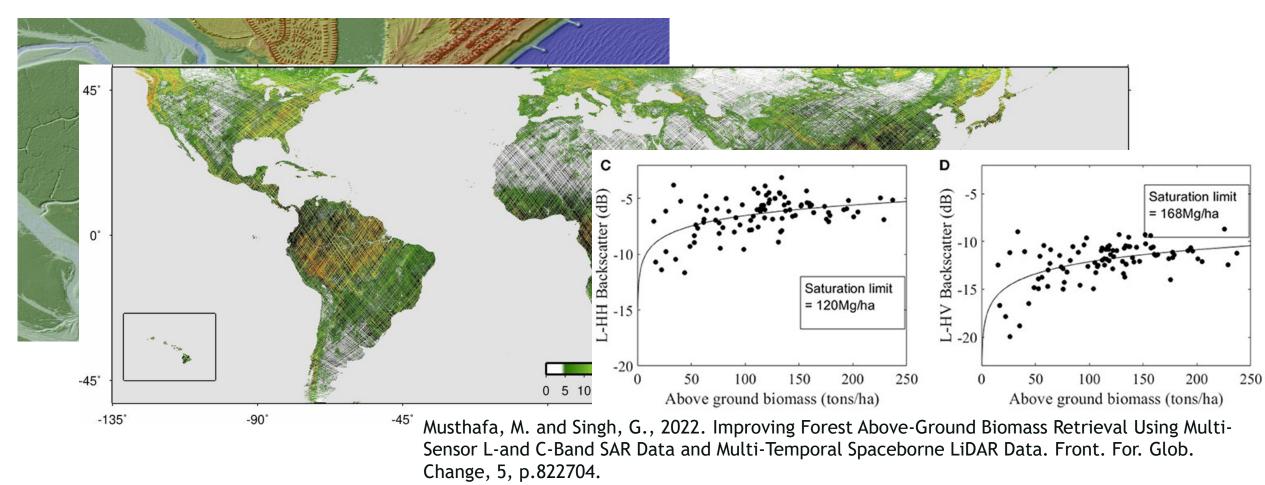
Chris Lowe, Ciara McGrath



Resilience * Steven.hancock@ed.ac.uk Constellation

Science & Technology Facilities Council UK Astronomy Technology Centre

Lidar measurement



2

Lidar data products

Allows unbiased, non-saturating measurements of:

- Bare-Earth topography (even in complex environments)
- Tree height, vegetation density and biomass

Spaceborne lidar missions

NASA LITE: 1994

Technology demonstrator

NASA ICESat/GLAS: 2003-2009

Ice elevation and volume

NASA Calipso/CALIOP: 2006-2019+

Cloud profiles

NASA CATS: 2015-2017

Cloud profiles

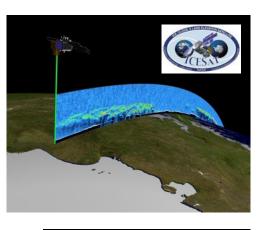
ESA Aeolus/ALADIN: 2018-2021+

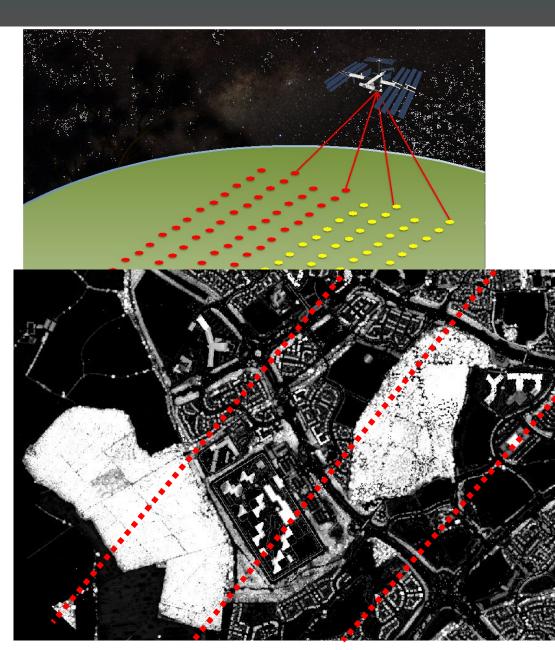
• 3D wind speed

NASA ICESat-2/ATLAS: 2018-2021+

Ice elevation and volume

NASA GEDI: 2018-2021+


Forest biomass and structure

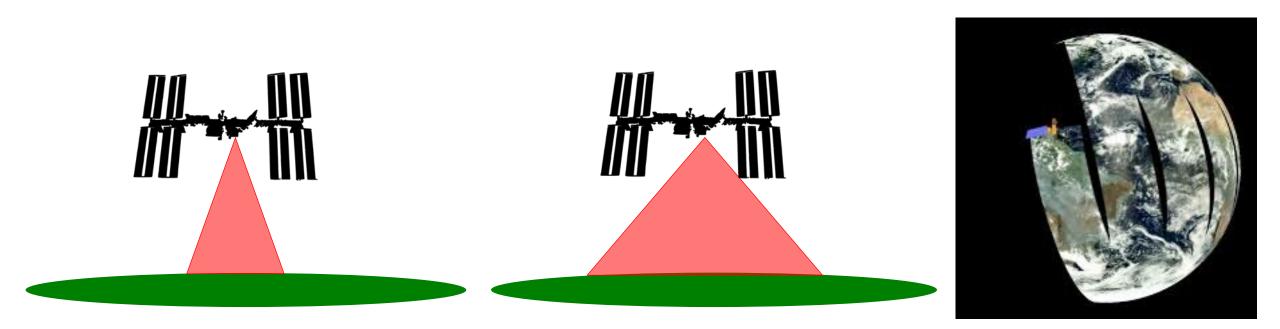


Lidar coverage

Sparse coverage limits applications

• Coarse resolution inference (forests, ice mass)

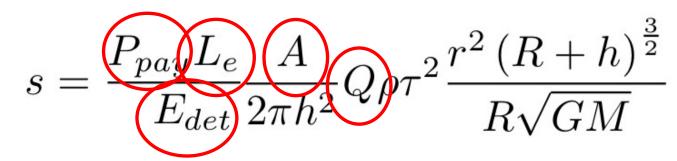
Too coarse to allow


- Continuous mapping
- Flood modelling
- Anything in urban areas
- Train line monitoring
- Commercial forestry

Sparse sampling leads to uncertainty

• Complicates robust change detection

Increasing lidar coverage



Continuous coverage satellite lidar would be...

- An incremental technology improvement
- A step change in data applications

Increasing lidar coverage

Which parts could we adjust to maximise coverage per unit cost?

- Instrument: Laser and detector efficiencies improved with new photonics?
- **Platform:** Maximise payload power and telescope area per unit cost?
- **Processing:** Reduce energy requirements with signal processing?

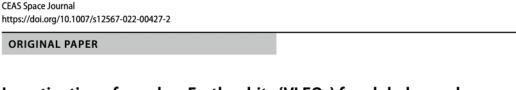
ROYAL SOCIETY OPEN SCIENCE

royalsocietypublishing.org/journal/rsos

Cite this article: Hancock S, McGrath C, Lowe C, Davenport I, Woodhouse I. 2021 Requirements for a global lidar system: spaceborne lidar with wall-to-wall coverage. *R. Soc. Open Sci.* 8: 211166.

https://doi.org/10.1098/rsos.211166

Research


Requirements for a global lidar system: spaceborne lidar with wall-to-wall coverage

Steven Hancock¹, Ciara McGrath², Christopher Lowe², lan Davenport¹ and lain Woodhouse¹

¹School of Geosciences, University of Edinburgh, Crew Building, Edinburgh EH9 3FF, UK ²Applied Space Technology Laboratory (ApSTL), Department of Electronic and Electrical Engineering, University of Strathdyde, 204 George St, Glasgow G1 1XW, UK D SH, 0000-0001-5659-6964; CM, 0000-0002-7540-7476

Lidar is the entirgum technology for measuring here Earth

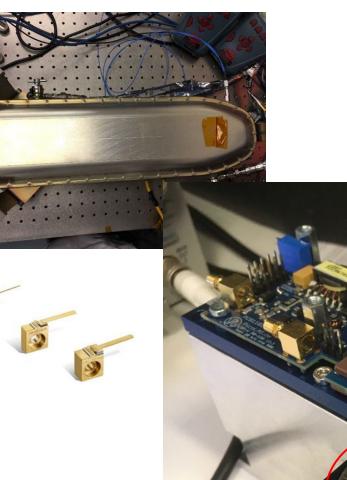
S

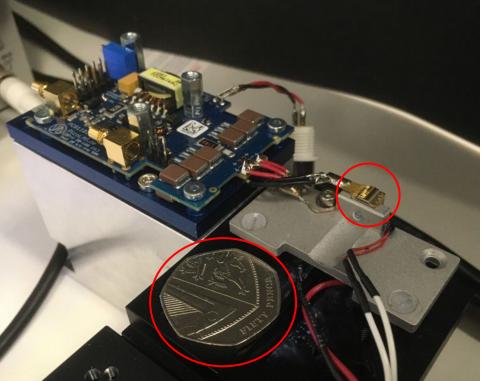
Investigation of very low Earth orbits (VLEOs) for global spaceborne lidar

Ciara McGrath¹ · Christopher Lowe¹ · Malcolm Macdonald¹ · Steven Hancock²

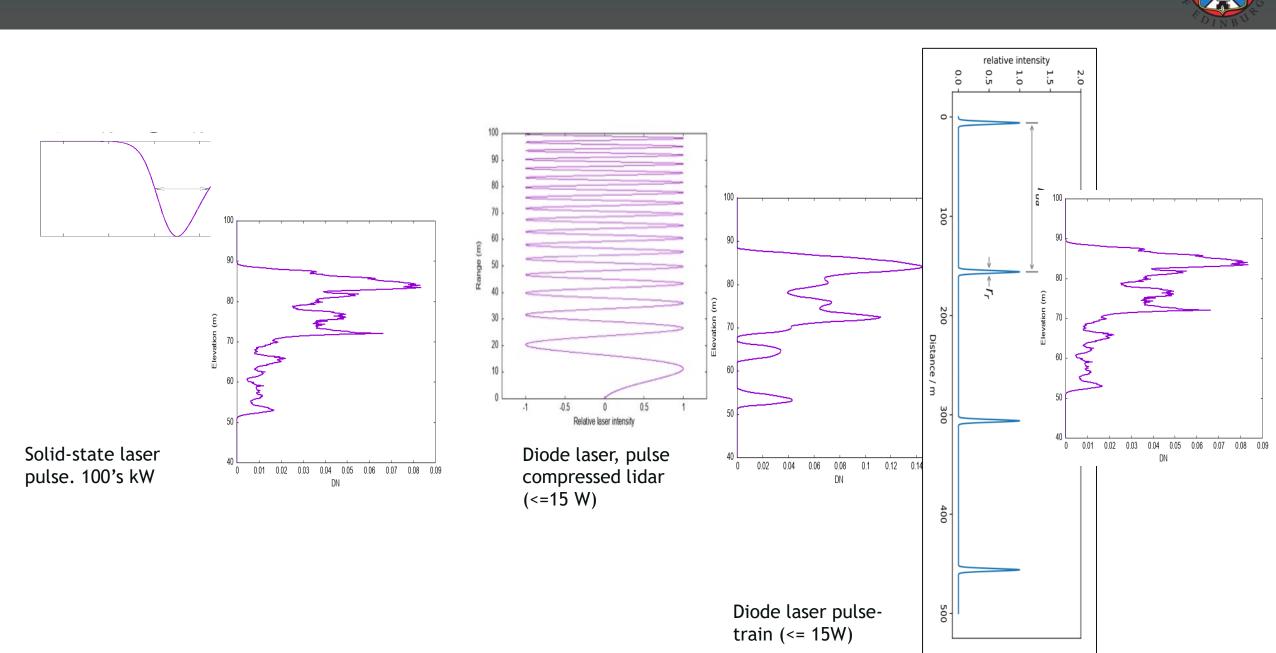
Received: 27 August 2021 / Revised: 23 December 2021 / Accepted: 28 January 2022 © The Author(s) 2022

Lasers

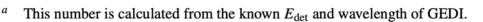


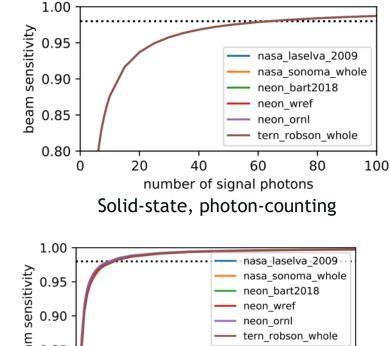

Laser modes considered

- Solid-state lasers:
 - Flight heritage
 - High peak powers (1000's kW)
 - Efficiencies of 5-8%
 - Large size


Laser modes considered

- Tapered laser diodes:
 - New technology
 - Low peak powers (~5 W)
 - High electric to optical efficiencies of around 45%
 - Small size
 - Simple


Laser source modes


Laser source requirements

	Source	Sourcesolid-stateModalitysingle pulse		diode	
	Modality			pulse train	PCL
	Detector	full waveform	photon counting	photon counting	photon counting
(Q	0.58	0.31	0.58	
s	L_e	0.11		0.25	
conditions	$N_{\rm rep}$	1		4 000	
ondition	$\Delta \lambda^{}$	0.7 nm	30 pm	1 nm	
<u>S</u> (T	$\approx 1 \mu s$	$\approx 1 \mu s$	4 ms	
(N _{photons}	1 500 ^a	60	115	11 400
	N _{noise}	n/a	0.02	5.3	8.4
2	$E_{\rm det}$	0.28 fJ	$0.014\mathrm{fJ}$	$0.027 \mathrm{fJ}$	2.66 fJ
ivi	$E_{\rm shot}$	$2.6 \mathrm{mJ}^{b}$	0.25 mJ	0.25 mJ	25.2 mJ
sensitivity	P _{peak}	79.7 kW ^b	7.5 kW	1.9 W	14.9 W
Sei	$P_{\rm avg}$	$0.66 \mathrm{W}^{b}$	0.06 W	0.06 W	6.3 W
4	swath	553 m	5898 m	13 085 m	132 m
l	N _{sat}	4	1	1	15

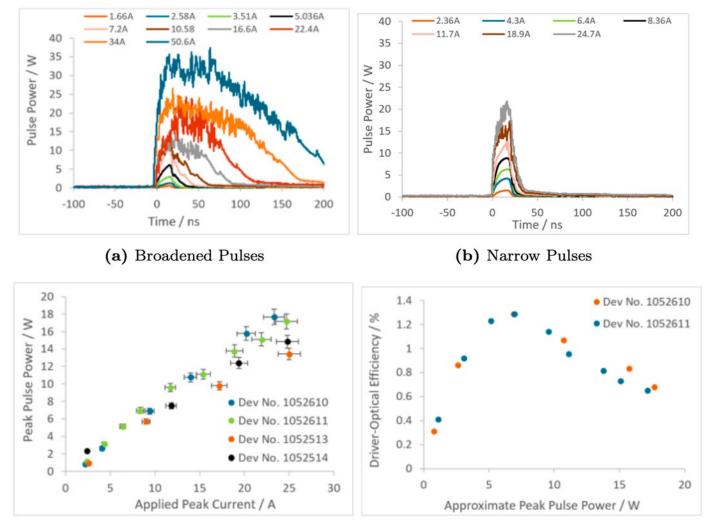
^b The actual values on GEDI are slightly higher at $E_{shot} = 5 \text{ mJ}$, $P_{peak} = 160 \text{ kW}$ and P_{av} inefficiencies.

Ative of signal photons 0.95 0.90 0.85 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.90 0.80 0.90

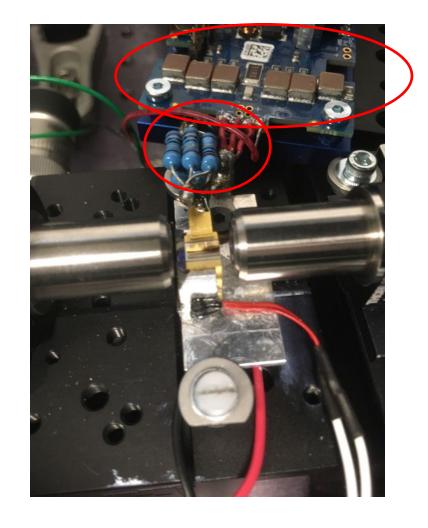
Article

remote sensing

Assessing Novel Lidar Modalities for Maximizing Coverage of a Spaceborne System through the Use of Diode Lasers


Johannes N. Hansen ^{1,*}, Steven Hancock ¹, Ludwig Prade ², Gerald M. Bonner ², Haochang Chen ², Ian Davenport ¹, Brynmor E. Jones ² and Matthew Purslow ¹

https://www.mdpi.com/2072-4292/14/10/2426


Laser power testing

Fraunhofer

(a) Peak power at 20 ns

Optics and platform

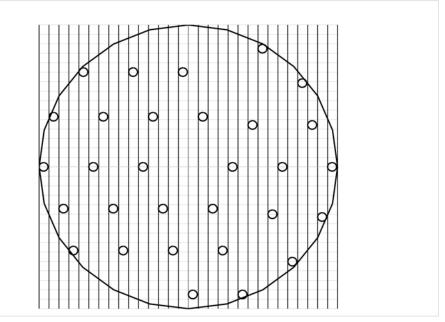


Figure 1-1: A potential arrangement of 30x 30m spots inside a 1km diameter, with a single spot in each vertical stripe to create a comb. The implied maximum spot separation is approximately 150m

Conclusions

Global lidar with continuous coverage is possible

- Diode laser can be used, although efficiency needs raising to make them competitive
 - Efficiency needs increasing and then TRL raising
- 150 kg satellite seems the preferred option
 - Most "cost-effective" way to generate lidar swath
 - Lower cost per platform reduces risk per launch
 - May allow deployable optics, further adding margin/lowering cost
- How best to fund the route to launch?
 - 1-2 year technology development project for
 - 1-2 year project for deployable optics
- Alternatives?
 - Sampling mission (NASA solid-state?)
 - Data fusion (lidar-SAR?)

Article

Assessing Novel Lidar Modalities for Maximizing Coverage of a Spaceborne System through the Use of Diode Lasers

Johannes N. Hansen ^{1,*}, Steven Hancock ¹, Ludwig Prade ², Gerald M. Bonner ², Haochang Chen ², Ian Davenport ¹, Brynmor E. Jones ² and Matthew Purslow ¹

CEAS Space Journal https://doi.org/10.1007/s12567-022-00427-2

ORIGINAL PAPER

Investigation of very low Earth orbits (VLEOs) for global spaceborne lidar

Ciara McGrath¹ · Christopher Lowe¹ · Malcolm Macdonald¹ · Steven Hancock²

Received: 27 August 2021 / Revised: 23 December 2021 / Accepted: 28 January 2022 © The Author(s) 2022

MDPI

ROYAL SOCIETY OPEN SCIENCE

royalsocietypublishing.org/journal/rsos

Check for

0

Cite this article: Hancock S, McGrath C, Lowe C, Davenport I, Woodhouse I. 2021 Requirements for a global lidar system: spaceborne lidar with wall-to-wall coverage. *R. Soc. Open Sci.* **8**: 211166.

https://doi.org/10.1098/rsos.211166

Requirements for a global lidar system: spaceborne lidar with wall-to-wall coverage

Steven Hancock¹, Ciara McGrath², Christopher Lowe², lan Davenport¹ and lain Woodhouse¹

¹School of Geosciences, University of Edinburgh, Crew Building, Edinburgh EH9 3FF, UK ²Applied Space Technology Laboratory (ApSTL), Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George St, Glasgow G1 1XW, UK

(D) SH, 0000-0001-5659-6964; CM, 0000-0002-7540-7476

Lidar is the optimum technology for measuring hare-Farth

Steven.hancock@ed.ac.uk