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Background

• Snow depth shows a clear decreasing trend of -8.4% on average1

• Temperature is increasing fast, 1 to 1.4 °C on average during the 20th

century2

• Climate projections show that the Alps will see an increase in summer 
droughts by more than 50%. This means that droughts could occur more 
than every second summer 3,4

1Matiu et al. (2019). Evaluating snow in EURO-CORDEX regional climate models with observations for the European 
Alps: biases and their relationship to orography, temperature, and precipitation mismatches. Atmosphere, 11(1), 46.

2Auer et al. (2007). HISTALP—historical instrumental climatological surface time series of the Greater Alpine 
Region. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(1), 17-46.

3Böhnisch et al. (2021). Hot Spots and Climate Trends of Meteorological Droughts in Europe–Assessing the Percent 
of Normal Index in a Single-Model Initial-Condition Large Ensemble. Frontiers in Water, 107. 

4Spinoni et al. (2018). Will drought events become more frequent and severe in Europe?. International Journal of 
Climatology, 38(4), 1718-1736.

Increasing frequency of 
drought threatening the 
“Water Towers” of Europe
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Study area 
Meadows primarily aimed at forage 

production in the province of Bolzano + 
meadows and pastures in the province 
of Trento

9.6% of the total area of the region

17697 farms
231439 parcels

“Agriculture Risk Management Plan, 
2022”, Italian Ministry of Agricultural, 
Food and Forestry Policies:
public support up to 65%
yield losses >30%
automatic system to identify losses

1st pilot insurance for the growing 
season of year 2022 for 8 farms where 
we collect ground measurements.
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[m]
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Aim of the project

𝐹𝑃𝐼𝑛 = ෍

𝑖=𝑆𝑂𝑆

𝑖=𝐸𝑂𝑆

(𝐿𝐴𝐼𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑 𝑖 ×𝑊𝑆)

∆𝐹𝑃𝐼𝑛 =
𝐹𝑃𝐼𝑛

𝑂𝑙𝑦𝑚𝑝𝑖𝑐 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐹𝑃𝐼𝑛−1; … ; 𝐹𝑃𝐼𝑛−5)

Develop and validate a combined meteorological/biophysical index to identify yield 

losses due to drought in mountain grasslands in the provinces of Bolzano and Trento

bio meteo • FPI: growing season cumulative of the daily 
product between LAI e lo water stress

• FPI deviations from the long-term average allow 
to identify drought events 

• Water stress and LAI anomalies correspond to the 
cause and the impact of drought
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Meteorological index: Water Stress

• Daily reference evapotranspiration (𝐸𝑇0) from Jensen-Haise equation over the 250-m grid

𝐸𝑇0 = (0.0252 ∙ 𝑇𝑚𝑒𝑎𝑛 + 0.078) ∙ 𝑅𝑎𝑑𝑠 ∙ 0.408

• Cws * = ቐ
0.5 + 0.5 ∙

𝑃

𝐸𝑇0
𝑃 ≤ 𝐸𝑇0

1 𝑃 > 𝐸𝑇0

• Cws is computed daily for 1-month accumulation periods from February to October

*Roumiguié, A., Jacquin, A., Sigel, G., Poilvé, H., Hagolle, O., & Daydé, J. (2015). Validation of a forage production index (FPI) derived from MODIS fCover
time-series using high-resolution satellite imagery: methodology, results and opportunities. Remote Sensing, 7(9), 11525-11550. 4/16



Biophysical index: LAI
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Design - test sites
Ritten (R)
1250-1270 m a.s.l. 

Laurein (L) 1330-1340 m a.s.l.

10 km

Fondo (F)
970 m a.s.l. 

L2L1

F1

R1 R2

R3R4

• 0.5 ha
• 2 cuts year-1 + AG
• N-input 167 kg ha-1

year-1

• 0.37 ha
• 3 cuts year-1

• N-input 167 kg 
ha-1 year-1

• 0.77 ha
• 3 cuts year-1 + AG
• N-input 209 kg ha-1

year-1

• 1.58 ha
• 3 cuts year-1 + AG
• N-input 209 kg ha-1

year-1

• 0.99 ha
• 4 cuts year-1

• N-input 162 kg ha-1 year-1

• 0.5 ha
• 4 cuts year-1

• N-input 162 kg ha-1

year-1

• 1.36 ha
• 3 cuts year-1

• N-input 186 kg 
ha-1 year-1

• 0.55 ha
• 2 cuts year-1

• N-input 186 kg 
ha-1 year-1

AG = autumn grazing

F2

• 4 ha
• 2 cuts year-1

Mazia (M) 1450-1550 m a.s.l.

• 1.1 ha
• grazed only

V1500 P2
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Validation of LAI

Global comparison for all the parcels

2 parcels, 5 years 10 parcels, 1 year

5 m buffer
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Sentinel-2 LAI Gap-filling

Method 1:
timeseries interpolation by
• Linear model at pixel level
• Linear model at parcel level
• Gaussian Process Regression  

model at parcel level

Output: 
Daily LAI timeseries for each 
parcel, without gaps

Input: 
Raster stack of LAI timeseries 
derived from Sentinel-2
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Interpolation at parcel level

Linear model Gaussian Process Regression model

Parametric model: 
We assume that an analytical linear model fits 
the data

Non-parametric model: 
We exploit observations to infer the best fitting 
model, without an analytical formulation

LA
I

DOY DOY

LA
I
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Results: Timeseries interpolation

Comparison between gap-filled LAI and measurements averaged at parcel level.
All_21 <- all available parcels in year 2021 
All_17_21 <- all available parcels in years 2017-2021

Pixel-based linear 
interpolation 
performs better.
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Sentinel-2 LAI gap-filling with Sentinel-1

Aim: enrichment of S2 LAI timeseries exploiting C band SAR 

data from Sentinel-1 A/B (S1), based on SAR sensitivity to 
vegetation structure

Challenge: SAR backscattering intensity is the combination of 

different interactions with soil and vegetation

Solution: Non-linear machine learning regression to infer a 

generic non-parametric relationship between the SAR signal and 
the target variable (LAI)

Surface + Volume Scattering,
Soil moisture, Vegetation water 
content, Surface roughness

𝜎0
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Gap-filling with Sentinel-1
Gaussian Process Regression (GPR) model: predict Gaussian 

distributions of the target function at the test points 𝒙∗ ∈ ℝ𝐷, with 
D the number of input features

*Greifeneder, F., Notarnicola, C., & Wagner, W. (2021). A machine learning-based approach for surface soil moisture estimations with google earth engine. Remote Sensing, 13(11), 2099.
https://gitlab.inf.unibz.it/Felix.Greifeneder/pysmm
** Rasmussen, C.E.,Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: New York, NY, USA (2006).

1) S1 pre-processing by SNAP S1 toolbox

2) Training: target -> S2, input features -> 𝜎𝑉𝐻
0 , 𝜎𝑉𝑉

0 , 𝑟𝑎𝑡𝑖𝑜 =
𝜎𝑉𝐻
0

𝜎𝑉𝑉
0 , 𝑅𝑉𝐼 =

4 𝜎𝑉𝐻

𝜎𝑉𝐻+𝜎𝑉𝑉
, soil moisture*, DOY

3) Validation: leave-one-out -> GPR performances are calculated excluding one sample per time from the training

(Adapted from **)

Best combination of input features: 𝝈𝑽𝑯
𝟎 , 𝑹𝑽𝑰, soil moisture*, DOY
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Preliminary Results: GPR model

Test at hillslope scale: 

Derivation of the model at polygon 
scale, on 126 parcels with different 
land use, including pastures, 
meadows, and alpine summer 

pastures

Training strategies:

• Global model for any land use

• Land use specific model

• Parcel Model

Monteschino, Venosta Valley 
(Bolzano), including measurement 
sites in parcels P2 and V1500.
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Preliminary Results: GPR model

Validation strategies:

• Temporal sampling:

Can the model predict 
missing overpasses?

• Spatial sampling:

Can the model predict 
missing pixels?
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Conclusions

Sentinel-2 LAI:
• Good performances compared to ground data
• Overestimation of low values

Gap-Filling methods:
• Interpolation

✓ Linear interpolation performs better than GPR interpolation

• GPR to estimate LAI from Sentinel-1: 
✓ Training: parcel scale models are more accurate due to homogeneity 
✓ Validation: the model is more performant to predict in space (missing pixels) than in time 

(missing overpass) 

• Ideal combination: 
✓ Spatial gap-filling by GPR LAI estimation from S1 + linear temporal interpolation 
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Outlook

1) FPI evaluation: Compare FPI with biomass measurements

2) ΔFPI exploitation for calculating 2022 payments for 8 insured test farms

3) FPI and ΔFPI publication on the Eurac 
maps portal:
https://maps.eurac.edu/layers/edp_geonode_data:geonode:FPI_2022_ts
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∆𝐹𝑃𝐼𝑛 =
𝐹𝑃𝐼𝑛

𝑂𝑙𝑦𝑚𝑝𝑖𝑐 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐹𝑃𝐼𝑛−1; … ; 𝐹𝑃𝐼𝑛−5)

𝐹𝑃𝐼𝑛 = ෍

𝑖=𝑆𝑂𝑆

𝑖=𝐸𝑂𝑆

(𝐿𝐴𝐼𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑 𝑖 ×𝑊𝑆) vs  ground measurements of biomass

https://maps.eurac.edu/layers/edp_geonode_data:geonode:FPI_2022_ts
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Thank you for your attention!

Contacts: Mariapina Castelli mariapina.castelli@eurac.edu

Giovanni Peratoner giovanni.peratoner@laimburg.it

mailto:mariapina.castelli@eurac.edu
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