Quantifying methane emissions and rice productivity in the Mekong delta with a simultaneous data assimilation scheme on L/C-band SAR data and ground observation

> Hironori Arai¹⁾, Thuy Le Toan¹⁾, Wataru Takeuchi²⁾, Kei Oyoshi³⁾, Hoa Phan¹⁾, Stephan Mermoz¹⁾, Alexandre Bouvet¹⁾, Lam Dao Nguyen⁴⁾, Tamon Fumoto⁵⁾, Kazuyuki Inubushi⁶⁾

Counter measure: Intermittent irrigation The necessity of quantifying GHG mitigation effect and rice productivity

Source: CEA analysis based on: Alexandratos and Bruinsma, 2012 Jhanvi Saini and Rajan Bhatt Current Journal of Applied Science and Technology · April 2020

AWD has been based on research works carried out in last decades

Gler

Multi-year study conducted on farmer fields in the Mekong Delta

AWD reduces methane emission, water demand, with slightly improved grain yield and quality (2012-2016 experiment)

Arai et al., SSPN 2021

• eesa

Rice phenology and satellite data pixel based simulation of CH₄ emission

Simulated daily CH₄ fluxes (kg C km⁻² h⁻¹)

C-band Sentinel-1 rice monitoring -inundation detectable at early rice growing stages-

VH

Inun. Not Inun. Image: Orgen Series Image: Orgen Series</

L-band PALSAR-2 rice monitoring -inundation detectable in the whole stages-

white pixels Not-inundated

69 days after sowing, 6th May 2016

SAR data assimilation of field water level simulation -binding cyber space and real space-

Arai et al., RSE under revision

How deep the field water was dropped by next irrigation? – Estimation by DA model parameter estimation –

· erest

A sample of validation result with ground observation data –semi dyke system-

A sample of validation result with ground observation data –full dyke system-

Ground-observed field waterlevel

Continuously inundated paddy

Paddy with intermittent drainage

Mean values of simulated field waterlevel

 $(4 \times 4 \text{ pixel windows around the ground observation point})$

— Continuously inundated paddy

— Paddy with intermittent drainage

The temporally local minimum waterlevel Continuously inundated paddy

A Paddy with intermittent drainage

Mean values of estimated $D_{before irrigation}$ (4×4 pixel windows around the ground observation point)

Continuously inundated paddy Paddy with intermittent drainage Arai et al., RSE under revision

Economic assessment of GHG mitigation measures under large uncertainties

Clear cost/benefits and actual farmers' participation are the keys to the adoption of new technologies by farmers.

Transparent MRV system on baselines/mitigation-effects with EO data should be enhanced.

To summarise and conclude

- 1. AWD practices recognised to be a good option for mitigation of GHG emissions from rice fields:
 - positive environmental impact,
 - adapted to climate change (water scarcity),
 - ensure food security,
 - preserve affordability of food

- 2. EO data can provide geospatial information on rice growth (S1) and field inundation status (ALOS-2-PALSAR-2), necessary for GHG accounting and for monitoring of food production
- 3. The requirements for future space observations will be for L-band SAR with systematic acquisitions and high temporal frequency (beyond ALOS 4 and NISAR, of 12-14 day repeat cycle, ROSE-L).
- Future operational application could be used by local stake-holders with low- computing cost but advanced processbased simulation model which considers local difference of soil parameters and high spatio-temporal resolution EO data.