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Overview

● Background on tillage, intensity and measurement

● Ground truth data and satellite imagery

● The model and early results

● Next steps



Background
Tillage

Preparation of soil for planting of next crop, and weed 
suppression by digging, mixing, overturning and loosening.

Impacts

● Increases wind and water erosion

● Increases exposure to direct sunlight, heat and 

evaporation

● Decreases soil organic matter

● Removes microbial food source

● Gradual decline in soil health and productivity

● Increases mechanical field operations

● Increases reliance on fertilisers



Background

Purpose of MRV

● Carbon credit platforms - carbon certificates and credits

● Agri-businesses - supply chain transparency

● Governments - verifying farm reported data to unlock payments (UK 

Environmental Land Management Scheme)

➔ Reducing the number of required in-field inspections



Background

Classifying tillage intensity

1. Depth of tillage
2. Residue percentage

Residue percentage

The fraction of the soil surface covered by crop residue, 
shortly after planting.

● No Till (> 30% crop residue cover)
● Min Till (15 to 30% crop residue cover)
● Conventional Till (< 15% crop residue cover)



Background

Demattê, José AM, et al. "Assessment of sugarcane harvesting residue effects on soil spectral behavior." Scientia Agricola 73 (2016): 159-168.

Lab experiments on spectral properties of crop residue, soil 
and moisture

● Higher crop residue % on top of soil generally results 
in higher reflectance



Background

Lab experiments on spectral properties of crop residue, soil 
and moisture

● Higher crop residue % on top of soil generally results 
in higher reflectance

● Soil type has a large impact on reflectance

Serbin, Guy, et al. "Effect of soil spectral properties on remote sensing of crop residue cover." Soil Science Society of America Journal 73.5 (2009): 1545-1558.



Background

Quemada, Miguel, and Craig ST Daughtry. "Spectral indices to improve crop residue cover estimation under varying moisture conditions." Remote Sensing 8.8 (2016): 660.

Lab experiments on spectral properties of crop residue, soil 
and moisture

● Higher crop residue % on top of soil generally results 
in higher reflectance

● Soil type has a large impact on reflectance

● Moisture content impacts reflectance - higher relative 
water content results in lower reflectance



Background

Bauer-Marschallinger, Bernhard, et al. "Toward global soil moisture monitoring with Sentinel-1: Harnessing assets and overcoming obstacles." IEEE Transactions on Geoscience and 
Remote Sensing 57.1 (2018): 520-539.
Baghdadi, Nicolas, et al. "Potential of Sentinel-1 images for estimating the soil roughness over bare agricultural soils." Water 10.2 (2018): 131.

Sentinel-2

● Spectral signature can help detect differences in residue 
% (SWIR bands are particularly important, as used in 
Normalised difference tillage index), but reflectance is 
affected by moisture

Sentinel-1

● Can be used to estimate moisture content
● Helps determine surface roughness



Ground truth data

➔ Training data for tillage verification is very rare
➔ Farm reported operations available in some instances

Large scale ground truth data collection

● Focus UK and USA (> 10,000 and 5,000 respectively)
● Standard operating procedure for data collectors
● Fulcrum App for consistent standardised data
● Revisits
● 2021/22 and ongoing

Data includes

● Tillage type, residue %, crop type
● Photos of every field
● Drone imagery for 10% of all fields

UK

USA



Ground truth data
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Data preparation

● Field boundary detection from ground truth point data

● Collect Sentinel-1 and Sentinel-2 imagery for each field

○ Sentinel-2 cloud detection, segmentation and removal

● Remove fields with NDVI > 0.3 - too much live vegetation to distinguish residue

● Additional categorical data per field

○ Crop type - from ground truth, or from crop-type-classification model for unvisited fields

○ Soil type - Soil Survey Geographic Database (SSURGO) USA

○ Moisture - ERA5, ECMWF Climate Reanalysis

● Data balancing and augmentation

○ rotation, flipping



Model overview
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Results
t-SNE plots



Results
t-SNE plots



Results
t-SNE plots



Next steps

● Ongoing data collection

● Expanding geographies

● Experiments

○ Clustering of GT data to identify outliers and noise

○ HLS - but not as replacement for Sentinel-2

○ Moisture from ERA5 or derive from Sentinel-1

○ Continuing to develop model architecture

● Time-series analysis
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