

SMOS Brightness Temperature Measurements - Performance and Evolution -

Roger Oliva¹, Raul Diez-Garcia, Manuel Martin-Neira¹, Ignasi Corbella¹, Ali Khazaal, Josep Closa⁶, Francois Cabot, Veronica Gonzalez, Raffaele Crapollicchio, Juha Kainulainen, Albert Zurita⁶, Joseph Tenerelli, Goncalo Lopes, Jose Barbosa, Daniel Barros, Javier del Castillo, Raúl Onrubia⁷,

¹ Zenithal Blue Technologies, Barcelona, Spain
² Telespazio UK, Madrid, Spain
³ European Space Agency, ESTEC, Noordwijk, The Netherlands
⁴ Universitat Politècnica de Catalunya, Barcelona, Spain
⁵ RDIS, Toulouse, France
⁶ Airbus Defence and Space, Madrid, Spain
⁷ CESBIO, Toulouse, France
⁸ ICM-CSIC, Barcelona, Spain
⁹ European Space Agency, ESRIN, Frascatti, Italy
¹⁰ Harp Technologies, Espoo, Finland
¹¹ ODL, Locmaria-Plouzané, France
¹² Deimos Engenheria, Lisbon, Portugal
¹³ RDA GmbH, Zurich, Switzerland

living planet BONN symposium 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

Content

- Introduction
- 3rd Mission REPROCESSING: Data quality
- Focus of Current Investigations
- New products
- Conclusions

SMOS INSTRUMENT - MIRAS

Multi-incidence angle and Polarization

SMOS multi-incidence angle observations

SMOS data

3rd Mission REPROCESSING: Data Quality

Data stability is evaluated with 3 references:

- Ocean Forward model of the BT in stable region using ISAS (In situ Analysis System) to extract SSS
- Dome-C measurements
- SMOS-SMAP Match-ups

Independently (using SMOS CAL team defined metric):

- for X and Y polarizations, Stk-1,3,4
- For different parts of the Field of View
- for Ascending and Descending orbits

LONG TERM STABILITY METRICS OVER OCEAN

Zenithal Blue Technologies

LONG TERM STABILITY METRICS OVER OCEAN

Zenithal Blue Technologies

SHORT TERM STABILITY METRICS OVER OCEAN

Short Term – Latitudinal Drift: AFFOV

Slope of the daily latitudinal slice

SHORT TERM STABILITY METRICS OVER OCEAN

Short Term – Latitudinal Drift: AFFOV

Slope of the daily latitudinal slice

Improved Latitudinal Drift Seasonality

200 - 55

Slightly degraded Avg Lat. Drift for ascending orbits, particularly 2016-2018

STABILITY METRICS OVER OCEAN

Long & Short term metrics summary table

AF-FOV					EAF-FOV			
	Metric AFFOV	Units	v620	v724	Metric EAF	Units	v620	v724
ASC	Long Term XX	[mK/yr]	38	17	Long Term XX	[mK/yr]	80	54
	Long Term YY	[mK/yr]	20	-18	Long Term YY	[mK/yr]	46	-11
	Long Term Stk1	[mK/yr]	30	0	Long Term Stk1	[mK/yr]	63	21
	Seasonal var. X	[K]	0.39	0.15	Seasonal var. X	[K]	0.47	0.31
	Seasonal var. Y	[K]	0.35	0.16	Seasonal var. Y	[K]	0.42	0.23
	Seasonal var. Stk1	[K]	0.37	0.11	Seasonal var. Stk1	[K]	0.43	0.21
	Lat. Drift	[mK/deg]	1.1	1.9	Lat. Drift	[mK/deg]	0.8	3.1
DES	Long Term XX	[mK/yr]	16	-2	Long Term XX	[mK/yr]	68	42
	Long Term YY	[mK/yr]	44	-2	Long Term YY	[mK/yr]	43	-10
	Long Term Stk1	[mK/yr]	30	-2	Long Term Stk1	[mK/yr]	55	16
	Seasonal var. X	[K]	0.56	0.44	Seasonal var. X	[K]	0.67	0.52
	Seasonal var. Y	[K]	0.52	0.40	Seasonal var. Y	[K]	0.66	0.62
	Seasonal var. Stk1	[K]	0.49	0.38	Seasonal var. Stk1	[K]	0.65	0.54
	Lat. Drift	[mK/deg]	3.0	-0.1	Lat. Drift	[mK/deg]	5.3	0.4
	Lat. Drift Eclipse	[mK/deg]	7.3	1.4	Lat. Drift Eclipse	[mK/deg]	1.8	-7.8
DESC-ASC	Diff ASC-DES	[K]	0.26	0.25	Diff ASC-DES	[K]	0.43	0.38

LONG TERM STABILITY OVER DOME-C: SMOS vs SMAP

SMOS – SMAP match-ups

SMOS – SMAP matchups

Spatial biases

Spatial biases

Important reduction of the dwell line negative slope in Ty

v724

Focus of current investigations

Temperature during Calibration

Cold, Warm and Hot NIR Calibrations

Latitudinal drift during eclipse

Land Sea contamination

Remaining Spatial Biases

Remaining Spatial Biases

Spatial Bias Tx SB-PC Removed

RFI

SMOS team is looking into modeling and filtering RFI signals.

Works well only on isolated RFI sources

New Products

CONCLUSIONS

- Payload and platform working well after more than 12 years
- Instrument measurements are extremely stable in the Long term
- Some thermal variations during eclipse periods still present
- New L1 products emerging
- Efforts are put in reducing the residual spatial biases, RFI signal and in the latitudinal variations, with promising techniques

