Feature level Data Fusion for enhancing the spatiotemporal resolution of Copernicus Sentinel products

ESA Living Planet Symposium 2022

Birgit Wunschheim, Dr. Diego Loyola (DLR), Dr. Ka Lok Chan (RAL)

24th May 2022

Knowledge for Tomorrow

Outline

- Motivation
- Characteristics of Copernicus WV products
- Approach
- First results
- Outlook

Motivation

4 DLR

Motivation

- Different Copernicus Sentinel missions launched
- Optical / radar sensors, covering multiple thematic domains
- Earth as complex system with interconnected geo-informational characteristics
- Overlapping information space, similar data products
- Significant differences
 - Spatial resolution
 - Temporal resolution
 - Spectral coverage
 - Different retrieval algorithms
- → Synergies when combining complementary products into a new, enhanced information product

Characteristics of Copernicus WV products

- Water Vapour (WV)
 - Important Greenhous Gas
 - Absorbing thermal infrared radiation
- WV products from S3 / S5P
 - Same feature (total water vapour column)
 - Different spatio-temporal and spectral/radiometric resolution
 - Different bands and algorithms used for retrieval

	Sentinel-3	Sentinel-5P
Instrument	OLCI	TROPOMI
Revisit time	< 2 days for S3A and S3B	daily
Spatial resolution	RR: 1.2 x 1.2 km (FR: 300m x 300m)	5.5 x 3.5 km
Water Vapour Variable	IWV	total_column_water_vapor
Description	Integrated water vapour column above the current pixel	Total vertical column of water vapor
Unit	kg/m^2	kg/m^2
Band for Water vapour retrieval	NIR: Oa18 (885 nm), Oa19 (900 nm)	Blue band (435 – 455 nm)
Local equatorial overpass time	10:00h	13:30h

Approach (Preprocessing)

• Data matching

• Detection of cloudfree pairs of S3 / S5P images with overlapping geographical coverage and close acquisition times

• Data download and consolidation

- Download from Scihub (S3) and DLR internal S5P data hub
- Consolidation of separated S3 files (geographic coordinates and water vapour retrievals) into a single netCDF file
- Discrete Global Grid System (DGGS)
 - Transform all S3/S5P data into to a uniform, standardised 2D grid with fixed locations

Approach (Preprocessing)

- H3: Hexagonal Hierarchical Spatial Index
 - Developed by Uber, open sourced on GitHub
 - Combination of **hexagonal global grid system** with **hierarchical indexing system**
 - H3 is used to transform all S3/S5P data into a hierarchical spatial index
 - Fixed grid with pre-defined locations allows for easy combination of all types of spatial data (remote sensing, in-situ measurements, social media)
 - Hierarchical index enables integration of spatial data with different resolutions
 - Hierarchical index allows for up- and downscaling (interpolated)
 - 16 resolutions, down to square meter

Approach (Preprocessing)

- H3: Hexagonal Hierarchical Spatial Index
 - Hexagonal areas have a certain characteristic: all distances between a cell and its six neighbours have the same length
 - This equidistance allows for easier application of algorithms like convolutions and data smoothing
 - Advantage to rectangular grids, where the geographical distance needs to be considered
 - Also enables enhanced movement analysis and model flow

Distances between neighbor cells in square grid (left) and in hexagonal grid (right) (source: Uber)

- A pair of S3/S5P water vapour products with high resolution (interpolated for S5P) and similar / close timestamps (2021-05-24 10:16 – 10:19 for S3, 2021-05-24 for S5P)
- All data on the same H3 grid

- Street of Gibraltar
 - **S5P TCWV** (left): H3 resolution **6** (avg. hex. area 36.13 km²)
 - **S3 IWV** (right): H3 resolution **8** (avg hex. area 0.74 km²)

Correlation of cropped S3/S5P data after preprocessing

15

S3 IWV

20

10

- 10

0

25

Histogram of S3 and S5P total column water vapour values

10 -

5

0

5

Main approach:

Regression with a deep neural network (DNN)

Dataset

- Create overlapping subset samples from S3/S5P data
- Directly comparable as corresponding subsets are located in the same H3 cells
- Use S3 data as fine-scaled reference / label

Deep Neural Network for regression

- Use a share of the subsets for training the DNN
- Use the remaining subsets for validation

First results

- Initial results show improvement of correlation between DNN model predictions and S3 values
- Further enhancement of model architecture for optimisation of results

Histogram of S3 and S5P total column water vapour values

Outlook

- Create prototype from demonstration
 - Include additional datasets for training & validation to enhance results
 - Improve robustness and scalability of algorithms
- Sentinel-4
 - Upcoming Copernicus mission for atmospheric monitoring:
 - Hourly monitoring over Europe
 - Very high temporal resolution
 - Can be combined with similar products from LEO missions (S5P, S3) and GEO missions (MTG IRS)
- Application for other (atmospheric) products
 - 03, NO2, PM, etc.
 - Land monitoring
 - Combination of Copernicus data with commercial products

