

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

EUMETSAT CECMWF

/F 🤃

Estimating soil moisture from hyperspectral images using (on-board) machine learning

Jakub Nalepa | jnalepa@ieee.org | Silesian University of Technology/KP Labs, Michal Myller | Silesian University of Technology/KP Labs, Lukasz Tulczyjew | Silesian University of Technology, KP Labs, Adam Gudys | Silesian University of Technology, Michal Staniszewski | Silesian University of Technology, Michal Kawulok | Silesian University of Technology/KP Labs, Michal Kozielski | Silesian University of Technology, Bogdan Ruszczak | QZ Solutions

ESA UNCLASSIFIED – For ESA Official Use Only

May 24, 2022

💳 🔜 📕 🛨 💳 🔚 📕 🗮 🔚 📕 🚛 📲 📲 🔤 📲 🔤 வ 🚳 🚬 📲 👫 🛨 📰 🔤 🔤 🛸 🔸

💻 📰 📲 🚍 🔤 🛶 📲 🔚 📰 🔜 📲 🔚 🔚 🔤 🛻 🚳 🖿 📲 层 🚛 🚳

💻 🔜 📲 🚍 💳 🛶 📲 🔚 📲 🔚 📲 🚍 🛻 🚳 🛌 📲 🗮 🖬 🖬 🖬 🗰 🙀 → THE EUROPEAN SPACE AGENCY

→ THE EUROPEAN SPACE AGENCY

· e e sa

→ THE EUROPEAN SPACE AGENCY

More than 3,000 labeled samples (hyperspectral image and in-situ measurements)

Zebra X1 (Ximea sensor): 150 bands (VIS-NIR: 470-900 [nm]) 2.2 cm GSD 24 fields, 5.25 m² Two different potato varieties Two soil profiles (light clay sand, heavy clay sand) Diverse irrigation scenarios: simulating drought, various irrigation (to keep 100%, 75% or 50% of estimated needs) Gravimetric in-situ measurements (ratio of the mass of water in soil to its mass after drying up)

RGB (R: 639.49 [nm], G: 551.6**(**,[nm], B: 468.83 [nm])

A REPORT OF THE OWNER OF THE ADDRESS OF THE ADDRESS

通道 制 新 编

→ THE EUROPEAN SPACE AGENCY

Zebra X1 (Ximea sensor):
150 bands (VIS-NIR: 470-900 [nm])
2.2 cm GSD
24 fields, 5.25 m²
Two different potato varieties
Two soil profiles (light clay sand, heavy clay sand)
Diverse irrigation scenarios: simulating drought, various irrigation (to keep 100%, 75% or 50% of estimated needs)
Gravimetric in-situ measurements (ratio of the mass of water in soil to its mass after drying up)

The reflectance distribution for different images:

33: 2020-06-16, moisture: 10.10, 121: 2020-06-09, moisture: 10.93, 143: 2020-07-01, moisture: 10.70, 166: 2020-07-21, moisture: 10.14, 183: 2020-08-13, moisture: 10.15, 219: 2020-06-04, moisture: 10.83, 536: 2020-06-09, moisture: 10.96

The reflectance distribution for images collected on one day with the same moisture measured (9.4) on the root level on 2020-06-16: 132: 10:21 (time), 133: 10:24, 135: 10:29, 136: 11:42, 137: 11:48, 138: 12:32, 139: 12:35, 140: 13:37.

→ THE EUROPEAN SPACE AGENCY

Estimating soil moisture as classification and regression tasks

More than 3,000 labeled samples (hyperspectral image and in-situ measurements)

	Mois	sture
Class	from	to
0	0.21	4.77
1	4.77	8.18
2	8.18	10.70
3	10.70	22.13

	Number	of sampl	es (in eac	ch class)
Fold	0	1	2	3
-1	237	145	128	102
0	74	80	142	120
1	97	138	141	187
2	122	156	134	150
3	109	86	115	105
4	149	152	109	104

Class distribution in six non-overlapping folds

Estimating soil moisture using classical machine learning

More than 3,000 labeled samples (hyperspectral image and in-situ measurements)

→ THE EUROPEAN SPACE AGENCY

Estimating soil moisture using deep machine learning

More than 3,000 labeled samples (hyperspectral image and in-situ measurements)

Estimating soil moisture: dimensionality reduction

More than 3,000 labeled samples (hyperspectral image and in-situ measurements)

R. Smith, 2012

Estimating soil moisture: dimensionality reduction

More than 3,000 labeled samples (hyperspectral image and in-situ measurements)

Estimating soil moisture: dimensionality reduction

More than 3,000 labeled samples (hyperspectral image and in-situ measurements)

→ THE EUROPEAN SPACE AGENCY

Estimating soil moisture: the results (classification: TOP 5)

		Fold 0	-	Fold 1			Fold 2			Fold 3			Fold 4				-1	
Type of model	Acc	Pre	F1	Acc	Pre	F1	Acc	Pre	F1	Acc	Pre	F1	Acc	Pre	F1	Acc	Pre	F1
1D-CNN (NDVI)	0.601	0.594	0.590	0.508	0.503	0.500	0.582	0.594	0.587	0.553	0.565	0.551	0.654	0.653	0.654	0.631	0.621	0.624
Random forest (S-MSI), statistical (mean, std, median), histogram features	0.632	0.624	0.615	0.591	0.596	0.580	0.626	0.645	0.630	0.578	0.602	0.567	0.611	0.623	0.622	0.482	0.509	0.490
Random forest (S-MSI), statistical (mean), histogram features	0.637	0.622	0.620	0.572	0.569	0.561	0.623	0.641	0.625	0.581	0.596	0.575	0.605	0.612	0.615	0.475	0.487	0.479
Random forest , statistical (median)	0.587	0.561	0.563	0.551	0.545	0.541	0.559	0.578	0.559	0.564	0.564	0.546	0.623	0.618	0.624	0.479	0.486	0.478
Random forest (S-MSI), statistical (mean)	0.625	0.607	0.610	0.561	0.565	0.553	0.617	0.637	0.620	0.561	0.574	0.559	0.617	0.628	0.626	0.475	0.481	0.473

💻 📰 📲 🚍 💳 🕂 📲 🔚 📰 🔚 📲 🔚 📲 🔚 🚛 🖓 🖿 📲 🗮 🖿 🖬 📲 🐂 👘

Estimating soil moisture: the results (classification: TOP 5)

		Fold 0	-	Fold 1				Fold 2		Fold 3			Fold 4				-1	
Type of model	Acc	Pre	F1	Acc	Pre	F1	Acc	Pre	F1	Acc	Pre	F1	Acc	Pre	F1	Acc	Pre	F1
1D-CNN (NDVI)	0.601	0.594	0.590	0.508	0.503	0.500	0.582	0.594	0.587	0.553	0.565	0.551	0.654	0.653	0.654	0.631	0.621	0.624
Random forest (S-MSI), statistical (mean, std, median), histogram features	0.632	0.624	0.615	0.591	0.596	0.580	0.626	0.645	0.630	0.578	0.602	0.567	0.611	0.623	0.622	0.482	0.509	0.490
Random forest (S-MSI), statistical (mean), histogram features	0.637	0.622	0.620	0.572	0.569	0.561	0.623	0.641	0.625	0.581	0.596	0.575	0.605	0.612	0.615	0.475	0.487	0.479
Random forest , statistical (median)	0.587	0.561	0.563	0.551	0.545	0.541	0.559	0.578	0.559	0.564	0.564	0.546	0.623	0.618	0.624	0.479	0.486	0.478
Random forest (S-MSI), statistical (mean)	0.625	0.607	0.610	0.561	0.565	0.553	0.617	0.637	0.620	0.561	0.574	0.559	0.617	0.628	0.626	0.475	0.481	0.473

J. Nalepa, M. Myller, M. Kawulok: Transfer Learning for Segmenting Dimensionally Reduced Hyperspectral Images. IEEE Geosci. Remote. Sens. Lett. 17(7): 1228-1232 (2020)

Estimating soil moisture: the results (regression: TOP 5)

		Fold 0		Fold 1			Fold 2			Fold 3				Fold 4			-1	
Type of model	MAE	MSE	R ²	MAE	MSE	R ²	MAE	MSE	R ²	MAE	MSE	R ²	MAE	MSE	R ²	MAE	MSE	R ²
Random forest (S-MSI), statistical (mean, std, median), histogram features	2.078	7.524	0.476	2.072	9.230	0.365	1.828	9.574	0.490	2.329	10.940	0.482	1.680	5.127	0.673	2.411	10.270	0.428
Random forest (S-MSI), statistical (mean), histogram features	2.062	8.154	0.433	2.127	8.839	0.392	1.830	9.357	0.501	2.390	11.800	0.441	1.669	5.239	0.665	2.599	11.350	0.368
Random forest (S-MSI), statistical (mean, std, median)	1.890	6.824	0.525	2.323	10.270	0.294	1.866	9.844	0.476	2.237	10.240	0.515	1.715	5.314	0.661	2.586	11.520	0.358
Random forest statistical (mean, std, median), histogram features	1.833	6.666	0.536	2.198	10.000	0.312	1.726	9.116	0.514	2.367	10.920	0.482	1.799	5.941	0.621	2.614	11.560	0.356
Random forest (S-MSI), statistical (mean), histogram features	2.158	9.146	0.364	2.22	9.505	0.347	1.904	10.410	0.446	2.487	12.890	0.389	1.762	5.696	0.636	2.692	12.020	0.330

Estimating soil moisture: the results (regression: TOP 5)

		Fold 0			Fold 1			Fold 2	-		Fold 3			Fold 4			Fold -	1
Type of model	MAE	MSE	R ²															
Random forest (S-MSI), statistical (mean, std, median), histogram features	2.078	7.524	0.476	2.072	9.230	0.365	1.828	9.574	0.490	2.329	10.940	0.482	1.680	5.127	0.673	2.411	10.270	0.428
Random forest (S-MSI), statistical (mean), histogram features	2.062	8.154	0.433	2.127	8.839	0.392	1.830	9.357	0.501	2.390	11.800	0.441	1.669	5.239	0.665	2.599	11.350	0.368
Random forest (S-MSI), statistical (mean, std, median)	1.890	6.824	0.525	2.323	10.270	0.294	1.866	9.844	0.476	2.237	10.240	0.515	1.715	5.314	0.661	2.586	11.520	0.358

Estimating soil moisture: the results (regression: TOP 5)

		Fold 0			Fold 1			Fold 2			Fold 3			Fold 4			Fold -	-1
Type of model	MAE	MSE	R ²															
Random forest (S-MSI), statistical (mean, std, median), histogram features	2.078	7.524	0.476	2.072	9.230	0.365	1.828	9.574	0.490	2.329	10.940	0.482	1.680	5.127	0.673	2.411	10.270	0.428
Random forest (S-MSI), statistical (mean), histogram features	2.062	8.154	0.433	2.127	8.839	0.392	1.830	9.357	0.501	2.390	11.800	0.441	1.669	5.239	0.665	2.599	11.350	0.368
Random forest (S-MSI), statistical (mean, std, median)	1.890	6.824	0.525	2.323	10.270	0.294	1.866	9.844	0.476	2.237	10.240	0.515	1.715	5.314	0.661	2.586	11.520	0.358

💻 🔜 📲 🚍 💳 🛶 📲 🔚 🔚 🔜 📲 🔚 🔚 🔚 🔤 🛻 🚳 🍉 📲 👫 🖬 🖬 📟 📾 🍁 🕨 🔸 The European Space Agency

J. Nalepa et al.: Towards on-board hyperspectral satellite segmentation, Remote Sensing 2021, 13(8), 1532 (https://www.mdpi.com/2072-4292/13/8/1532)

							1D	CNN							
		(Gaussiar	ı				Impulsiv	e				Poisson	ı	
$\eta_{\rm P} \rightarrow$	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5
OA	0.87	1.74	2.61	3.50	4.35	5.15	10.28	15.41	20.62	25.76	4.16	8.33	12.51	16.61	20.8
BA	0.98	1.92	2.77	3.76	4.67	4.91	9.72	14.68	19.47	24.36	3.99	8.04	12.13	16.07	20.1
κ	1.12	2.23	3.34	4.48	5.58	6.03	11.95	17.87	23.66	29.46	4.97	9.94	14.91	19.76	24.7
OA'	-0.35	0.54	1.43	2.34	3.22	4.16	9.56	15.00	20.43	25.83	3.14	7.54	11.96	16.28	20.7
BA'	-0.60	0.53	1.54	2.73	3.81	4.15	9.97	15.91	21.71	27.63	2.96	7.76	12.62	17.29	22.1
κ'	-0.71	0.44	1.59	2.77	3.92	4.92	11.51	18.03	24.52	30.88	3.51	8.87	14.22	19.44	24.7
							2.51	O CNN							
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
$\eta_{\rm P} \rightarrow$	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5
OA	0.08	0.09	0.09	0.10	0.12	4.53	8.97	13.43	17.90	22.32	1.58	3.09	4.57	6.09	7.5
BA	0.13	0.15	0.15	0.16	0.20	4.05	7.98	11.87	15.78	19.68	1.61	3.08	4.54	6.01	7.5
κ	0.10	0.12	0.13	0.14	0.17	5.03	9.88	14.69	19.43	24.15	2.04	4.01	5.98	7.99	10.0
OA'	0.08	0.09	0.09	0.11	0.12	4.83	9.55	14.32	19.07	23.84	1.62	3.17	4.70	6.26	7.8
BA'	0.16	0.18	0.18	0.20	0.23	4.88	9.61	14.25	18.94	23.69	1.93	3.70	5.46	7.23	9.0
κ'	0.10	0.12	0.13	0.15	0.17	5.87	11.57	17.17	22.68	28.13	2.11	4.15	6.18	8.26	10.3
							3D	CNN							
		(Gaussiar	ı				Impulsiv	e				Poisson	ı	
$\eta_{\rm P} \rightarrow$	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5
OA	0.07	0.12	0.18	0.24	0.30	3.90	7.74	11.61	15.46	19.33	3.07	6.11	9.17	12.22	15.2
BA	-0.04	0.02	0.09	0.15	0.21	4.16	8.43	12.65	16.92	21.19	3.21	6.54	9.85	13.17	16.4
κ	0.03	0.10	0.17	0.25	0.32	5.00	10.01	15.04	20.07	25.22	3.82	7.66	11.55	15.43	19.2
OA'	0.07	0.13	0.19	0.25	0.74	4.06	8.09	12.12	16.14	20.18	3.25	6.47	9.71	12.94	16.1
BA'	-0.05	0.03	0.10	0.16	-0.19	4.96	10.06	15.06	20.16	25.26	3.78	7.70	11.60	15.50	19.3
ĸ'	0.04	0.11	0.19	0.27	0.34	5.51	11.06	16.61	22.06	27.67	4 1 4	8.28	12 46	16.62	20.7

Input HSIs

J. Nalepa et al.: Tow 2021, 13(8), 1532 (r

Phosphorus 30.974

https://platform.ai4eo.eu/seeing-beyond-the-visible

• (2)

CALLS

GENERAL

ORGANIZING COMMITTEE PLENARY SPEAKERS

KERS AUTHORS

MPORTANT DATES BORDEAUX & ICIP2022

LCIP2022 CONTACT US

Q

IEEE International Conference in Image Processing ICIP 2022 16-19 October 2022 Bordeaux, France

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

(ะบุรรค 🖸

Jakub Nalepa | jnalepa@ieee.org | Silesian University of Technology/KP Labs, Michal Myller | Silesian University of Technology/KP Labs, Lukasz Tulczyjew | Silesian University of Technology, KP Labs, Adam Gudys | Silesian University of Technology, Michal Staniszewski | Silesian University of Technology, Michal Kawulok | Silesian University of Technology/KP Labs, Michal Kozielski | Silesian University of Technology, Bogdan Ruszczak | QZ Solutions KP LABS

ESA UNCLASSIFIED – For ESA Official Use Only

May 24, 2022

💳 💶 📕 🛨 🔤 🔤 📕 🖆 📕 📕 🖛 👫 💳 🛶 🚳 🔽 📲 👫 🛨 🖬 📰 👘