Audiovisual Self-Supervised Learning for Remote Sensing Data

Konrad Heidler¹², Lichao Mou¹², Di Hu³, Pu Jin¹², Guangyao Li³, Chuang Gan⁴, Ji-Rong Wen³, Xiao Xiang Zhu¹²

Wissen für Morgen

- ¹ German Aerospace Center (DLR)
- $^{\rm 2}$ Technische Universität München (TUM)
- $^{\rm 3}$ Renmin University of China
- $^4\,$ MIT-IBM Watson AI Lab

26.05.2022

Audiovisual Learning in Remote Sensing

Idea

Audiovisual Learning in Remote Sensing

Idea

- Recent SSL methods rely on generating different "views" of the data

Audiovisual Learning in Remote Sensing

Idea

- Recent SSL methods rely on generating different "views" of the data
- Consider imagery and local audio as drastically different "views"

Audiovisual Learning in Remote Sensing

Idea

- Recent SSL methods rely on generating different "views" of the data
- Consider imagery and local audio as drastically different "views"
- Use Audiovisual SSL as pretraining for other tasks

Audiovisual Data in Remote Sensing

Existing Geo-Audio Datasets

Audiovisual Data in Remote Sensing

Existing Geo-Audio Datasets

- CVS [1] - Unspecified audio content (Freesound)

Audiovisual Data in Remote Sensing

Existing Geo-Audio Datasets

- CVS [1] Unspecified audio content (Freesound)
- ADVANCE [2] Small (~5,000 samples)

SoundingEarth Dataset

Radio Aporee:::Maps

- Crowd-sourced database of geo-tagged field recordings.

SoundingEarth Dataset

Radio Aporee:::Maps

• Crowd-sourced database of geo-tagged field recordings.

Field Recording: Audio recording taken to capture the ambience of a scene.

SoundingEarth Dataset

Radio Aporee:::Maps

- Crowd-sourced database of geo-tagged field recordings.
 Field Recording: Audio recording taken to capture the ambience of a scene.
- Good spatial coverage, with focus on Europe.
- High quality audio.

SoundingEarth Dataset

Radio Aporee:::Maps

- Crowd-sourced database of geo-tagged field recordings.
 Field Recording: Audio recording taken to capture the ambience of a scene.
- Good spatial coverage, with focus on Europe.
- High quality audio.

Sounding Earth Dataset

- Download Aporee audio and convert to log-mel spectrograms
- Pair spectrograms with corresponding Google Earth imagery

SoundingEarth Dataset

Lake Bunyonyi, Uganda

Tokyo, Japan

SoundingEarth Dataset

Lake Bunyonyi, Uganda

Tokyo, Japan

SoundingEarth Dataset

Lake Bunyonyi, Uganda

un die der Berneten auf eine der Berneten der Berneten der Berneten der Berneten der Berneten der Berneten der

Tokyo, Japan

Spatial Distribution

SoundingEarth Dataset Overview

Per Sample

- Raw Audio (mp3)
- Log-mel Spectrogram ($128 \times T$)
- Google Earth Imagery ($1024 \times 1024 \times 3$)

Dataset

- 50,545 samples
- ~3500 hours of audio.

Multi-Modal Self-Supervised Learning

Task Formulation

Find/train embedding functions $\mathit{f}_{\mathrm{image}}$ and $\mathit{f}_{\mathrm{audio}}\textsc{,}$ such that

for corresponding pairs, and

for unrelated pairs

for corresponding pairs, and

for unrelated pairs

Multi-Modal Self-Supervised Learning

Task Formulation

Find/train embedding functions $\mathit{f}_{\mathrm{image}}$ and $\mathit{f}_{\mathrm{audio}}\text{,}$ such that

 \rightarrow Choose ResNets as prototypes for $\mathit{f}_{\mathrm{image}}$ and $\mathit{f}_{\mathrm{audio}}.$

Framework

Framework

Data Augmentation

- Imagery: Flips, Rotations, Crops
- Spectrograms: Temporal Crops

Framework

Training Steps

- Forward Pass: Calculate Embeddings
- Calculate Loss
- = Backpropagate to update f_{image} and f_{audio}

Framework

Loss Function

- Pull corresponding embeddings together
- Push other embeddings apart
- Evaluate multiple loss functions

Loss Function

SSL Loss Functions

• Triplet Loss: $L_{\text{triplet}} = \max \{ d_{\text{false}} - d_{\text{true}} + 1, 0 \}$ • Contrastive Loss: $L_{\text{contrastive}} = \frac{\exp(\sin(z_i, z_j)/\tau)}{\sum_{k=1, k \neq i}^{2N} \exp(\sin(z_i, z_k)/\tau)}$

Loss Function

SSL Loss Functions

• Triplet Loss:
$$L_{\text{triplet}} = \max \{ d_{\text{false}} - d_{\text{true}} + 1, 0 \}$$

• Contrastive Loss: $L_{\text{contrastive}} = \frac{\exp(\sin(z_i, z_j)/\tau)}{\sum_{k=1, k \neq i}^{2N} \exp(\sin(z_i, z_k)/\tau)}$

Observations

- Contrastive Loss requires large batch sizes to work well
- Triplet Loss is "wasteful"
- Implement batch-all Triplet Loss

Batch-all Triplet Loss Calculate Triplet Loss for all possible triplets in a batch

Loss Function

· · · · · · · · · · ·

Batch-all Triplet Loss Calculate Triplet Loss for all possible

triplets in a batch

Loss Function

d_{1,1}

 $d_{3,1}$

 $d_{3,2}$ $d_{3,3}$

d_{1,1}

d_{2,1}

d_{3,1}

Batch-all Triplet Loss Calculate Triplet Loss for all possible

triplets in a batch

Loss Function

 $d_{3,2}$ $d_{3,3}$

Positive Pairs Negative Pairs

Downstream: Aerial Image Classification

Experiment

- Compare different pre-training methods
- Fine-tune on different datasets
- Architecture: Add classification head (FC Layer) to ResNet-50 backbones
- Just using imagery, no audio

14

14

15

Downstream: Aerial Image Segmentation

Experiment

- Different Application: Image Segmentation
- Fine-tune DeepLabv3+ with pre-trained ResNet-50 backbones
- Dataset: DeepGlobe 2018 [6]
- Just using imagery, no audio

	ResNet-18		ResN	let-50
Weights	OA	mloU	OA	mloU
Random				
ImageNet				
Tile2Vec [7]				
Contrastive [8]				
SimCLR [8]				
MoCo [9]				
AudioVisual				

	ResN	et-18	ResNet-50		
Weights	OA	mloU	OA	mloU	
Random	81.09	55.38	80.81	54.42	
ImageNet	83.27	61.95	82.27	59.31	
Tile2Vec [7]	80.50	56.93			
Contrastive [8]	85.25	64.85	86.06	68.46	
SimCLR [8]	85.65	66.15	83.80	63.97	
MoCo [9]	84.79	65.28	85.07	66.17	
AudioVisual	86.11	67.07	86.58	67.87	

Downstream: Audiovisual Scene Classification

Experiment

- ADVANCE Dataset [2]: Audiovisual dataset with scene labels
- Linear Evaluation Protocol
- Compare against supervised baseline

Data Used	Audio F_1	$Image\;F_1$	$Audio + Image \; F_1$
Supervised Baseline [2] Ours (ResNet-18) Ours (ResNet-50)			

Data Used	$Audio\;F_1$	$Image\;F_1$	$Audio + Image \; F_1$
Supervised Baseline [2]	28.99		
Ours (ResNet-18)	37.69		
Ours (ResNet-50)	39.01		

Data Used	$Audio\;F_1$	$Image\;F_1$	$Audio + Image \; F_1$
Supervised Baseline [2]	28.99	72.85	
Ours (ResNet-18)	37.69	86.92	
Ours (ResNet-50)	39.01	83.84	

Data Used	$Audio\;F_1$	$Image\;F_1$	$Audio + Image \; F_1$
Supervised Baseline [2]	28.99	72.85	74.58
Ours (ResNet-18)	37.69	86.92	89.50
Ours (ResNet-50)	39.01	83.84	88.83

Conclusion

- Additional modalities like audio are beneficial for SSL

Conclusion

- Additional modalities like audio are beneficial for SSL
- The more different the modalities, the better?

Conclusion

- Additional modalities like audio are beneficial for SSL
- The more different the modalities, the better?

Conclusion

- Additional modalities like audio are beneficial for SSL
- The more different the modalities, the better?

Dataset / Code / Pre-trained Models https://github.com/khdlr/SoundingEarth

References i

- Tawfiq Salem et al. "A Multimodal Approach to Mapping Soundscapes". In: IGARSS 2018 2018 IEEE International Geoscience and Remote Sensing Symposium. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE, July 2018, pp. 3477–3480.
- [2] Di Hu et al. "Cross-Task Transfer for Geotagged Audiovisual Aerial Scene Recognition". In: *ECCV 2020* (2020), p. 17.
- [3] Yi Yang and Shawn D. Newsam. "Bag-of-Visual-Words and Spatial Extensions for Land-Use Classification". In: 18th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, ACM-GIS 2010, November 3-5, 2010, San Jose, CA, USA, Proceedings. Ed. by Divyakant Agrawal et al. ACM, 2010, pp. 270–279.
- [4] Gong Cheng, Junwei Han, and Xiaoqiang Lu. "Remote Sensing Image Scene Classification: Benchmark and State of the Art". In: *Proc. IEEE* 105.10 (Oct. 2017), pp. 1865–1883.

References ii

- [5] G. Xia et al. "AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification". In: *IEEE Trans. Geosci. Remote Sens.* 55.7 (July 2017), pp. 3965–3981.
- [6] Ilke Demir et al. "DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images". In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). June 2018, pp. 172–17209. arXiv: 1805.06561 [cs].
- [7] Neal Jean et al. "Tile2Vec: Unsupervised Representation Learning for Spatially Distributed Data". In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, the Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, the Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press, 2019, pp. 3967–3974.
- [8] Ting Chen et al. "A Simple Framework for Contrastive Learning of Visual Representations". In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Vol. 119. Proceedings of Machine Learning Research. PMLR, 2020, pp. 1597–1607.

References iii

[9] Kaiming He et al. "Momentum Contrast for Unsupervised Visual Representation Learning". In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. IEEE, 2020, pp. 9726–9735.

Backup Slides

Loss Function Ablation

		Naive TL		Contrastive Loss		Batch-all TL	
Benchmark	Metric	RN-18	RN-50	RN-18	RN-50	RN-18	RN-50
UC Merced Land Use [3]	Acc.	5.14	77.43	86.48	88.19	90.19	89.71
NWPU-RESISC45 [4]	Acc.	76.11	72.15	80.65	82.41	81.71	84.88
AID [5]	Acc.	78.70	75.64	77.18	81.08	81.78	84.44
DeepGlobe Land Cover [6]	Acc.	83.96	85.40	80.72	85.96	86.11	86.58
	mloU	63.14	65.18	57.26	67.28	67.07	67.87
ADVANCE [2]	F_1	88.51	87.61	79.42	80.84	89.46	88.83

