
Interpretable Representation Learning for High Resolution
Satellite Image Time Series

Yoël Zerah

Silvia Valero, Jordi Inglada,
Centre d’Etudes Spatiales de la BIOsphere (CESBIO)

May 24th 2022

1



Sentinel-2 optical images

New opportunity for land monitoring
The Sentinel-2 Constellation has 2
satellites dedicated to land masses
monitoring, launched in 2015 and 2017.

Figure 1 – Satellite Image Time Series

Figure 2 – Sentinel 2 image with clouds

Challenges of S2 data exploitation

• High dimension data

• Irregular sampling (spatial &
temporal)

• Labelled datasets are costly and rare

• Complex with high variability
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Satellite data low dimensional representation learning

Data representation
Finding transformation z = r(x) of data x that is useful for subsequent applications.

Desired representation requirements for satellite data

Unsupervised Deployable at large
scale

Probabilistic Interpretable
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Satellite data low dimensional representation learning

Data representation
Finding transformation z = r(x) of data x that is useful for subsequent applications.

Desired representation requirements for satellite data

Unsupervised Deployable at large
scale

Probabilistic Interpretable

Existing representation learning methodologies
Deep generative methodologies have been proposed for combining deep learning
architectures and Bayesian inference framework with unsupervised training :
⇒ Variational Auto Encoders
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Variational Auto Encoder (VAE)

L (qλ) = −E [log p(x|z)] + KL (qλ(z|x)‖p(z))

Figure 3 – Variational Auto Encoder 1

Latent space

• Usual prior on latent space : p(z) = N (0, I )

• Reparametrization trick :

z = µz (x) + ε · σz (x), ε ∼ N (0, I ) ⇒ z ∼ N (µz (x), σ
2
z (x)) (1)

1. Diederik P Kingma et Max Welling. Auto-Encoding Variational Bayes. 2014. arXiv : 1312.6114
[stat.ML]. 4

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114


Objectives

Limitation of using VAEs

• Not developped for SITS

• Uninterpretable latent space

• Usual p(z) ∼ N (0, 1) is arbitrary

Objectives

• Adapt VAE for SITS

• Infer interpretable representation with VAE

• Integrate prior knowledge of data into VAE latent space

What is a good representation of physical data ?
⇒ parameters of physical models
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Summary

1. Integrating physics into VAE

2. NDVI time series model

3. Experimental results
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Integrating physics into VAE : decoder-simulator

VAE with Decoder-Simulator (VAE-DS)

• Decoder’s neural network is replaced by a user-defined model 2

• Latent variables are semantically bound to model’s parameters

2. Miguel A. Aragon-Calvo. “Self-supervised learning with physics-aware neural networks – I. Galaxy
model fitting”. In : Monthly Notices of the Royal Astronomical Society (2020).
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Loss of VAE with decoder-simulator

Loss of VAE-DS
Without specific prior p(z) :

L (qλ) = −E [log p(x|z)] +(((((((hhhhhhhKL (qλ(z|x)‖p(z))
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Loss of VAE with decoder-simulator

Loss of VAE-DS
Without specific prior p(z) :

L (qλ) = −E [log p(x|z)] +(((((((hhhhhhhKL (qλ(z|x)‖p(z))

≈
1
L

L∑
i=1

log 2πσx (zi ) +
(x − µx (zi ))2

σ2x (zi )
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Loss of VAE with decoder-simulator

Decoder’s distribution’s output parameters

Figure 4 – Simulator-decoder

Monte Carlo sampling of latent space :

• µx (z) ≈ 1
N

∑N
i=1 x̂i

• σx (z) ≈ 1
N

∑N
i=1(x̂i − µx (z))2

with x̂i = f (zi ).
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Incorporating knowledge in latent space

What priors can be brought to latent space ?

• Model parameters can be bounded

• Model parameters can be ordered

Bounding latent distributions
Bounded distributions can be directly sampled with Inverse Transform Method :

z = F−1A (u) , u ∼ U (0, 1) ⇒ z ∼ A (2)

with F−1A a tractable inverse CDF of distribution A.

Ordering Latent Distributions
ordered samples z0 < z1 are rectified :

z0 ← z0

z1 ← max(z0, z1)
(3)
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NDVI time series : the phenological model

Normalized Difference Vegetation Index (NDVI)

NDVI =
ρNIR − ρR
ρNIR + ρR

∈ [−1, 1]

NDVI characterizes photsynthetic vegetation vigor and activity.

Figure 5 – Sunflower NDVI time series
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Phenological model

Variable Description

M Maximum of double logistic
m minimum of double logistic
sos date of Start Of Season, the start of NDVI growth
mat date of Maturity, the end of the NDVI growth
sen date of Senescence, the start of NDVI decay
eos date of End Of Season, end of NDVI decay

Figure 6 – Phenological model 3

3. Xiaoyang Zhang et al. “Monitoring vegetation phenology using MODIS”. In : Remote Sensing of
Environment 84.3 (2003), p. 471-475. 13



Phenological model

Double-logistic model

fφ(t) =

(
max
NDVI

− min
NDVI

)
(S1(t)− S2(t)) + min

NDVI

S1(t) =

(
1+ exp

(
2
sos+mat− 2t

mat− sos

))−1
S2(t) =

(
1+ exp

(
2
sen+ eos− 2t

eos− sen

))−1
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Proposed approach : integrating phenological model into VAE

Latent variables are semantically bound to phenological parameters.
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Summary

1. Integrating physics into VAE

2. NDVI time series model

3. Experimental results
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Datasets

S2 dataset

• 106 S2 time series

• 2018 time series from 31TCJ tile

• 20 land cover classes

• Time series interpolated to 5-day sampling.

Simulated dataset
Using the phenological model, we simulate NDVI Time series for validation purposes.
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Experimental setup

Training Setup

• Number of Monte Carlo samples of latent space per time series : 10

• Learning rate : 10−4

• Latent distribution : Truncated gaussians

Validation experiences

• Evaluation of the quality of reconstruction

• Evaluation of the quality of inferred phenological parameters.

Figure 6 – Simple encoder architecture with 4 hidden layers and ReLU activation
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Evaluation of the quality of reconstruction

Figure 7 – Time series reconstructions for 20 class samples. Blue : Original time serie - Red : Reconstruction of
phenological mode - Orange 90% confidence interval
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Evaluation of the quality of reconstruction

Figure 7 – Reconstruction and latent distributions of corn ndvi time series

18



Compartive evaluation of phenological parameters inference

We use our method to solve the phenological model inverse problem. We compare it
to 2 other classical methods.

Characteristics MCMC 3 NN Regression VAE-DS

Unsupervised X X
Probabilistic X X X
Large Scale X X
Training Dataset None Simulated S2

Inferred distribution
Full

approximate
distribution

Truncated
Gaussian
parameters

Truncated
Gaussian
parameters

Table 1 – List of experiences for inverting the phenological model

Note :

• NN regression has the same NN structure than encoder of VAE-DS

3. Markov Chain Monte Carlo
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Evaluation of the quality of phenological parameters estimation

Inference error of the three methods :

• NN regression has the best MAE

• MCMC & VAE-DS are comparable.

Method MCMC NN Regression VAE-DS

Point estimate Median Mode Mode

M 0.04 0.04 0.06
m 0.02 0.01 0.02
sos 8.58 6.83 10.34
mat 11.78 7.84 10.44
sen 11.54 7.22 11.96
eos 12.04 6.83 14.36

Table 2 – Mean Absolute Error
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Evaluation of the quality of inferred latent distributions

Quality of 5-95th centile confidence intervals :

• MCMC & NN regression very close confidence interval belonging rate

• VAE-DS underestimates uncertainty

• MCMC has smaller (more precise) confidence intervals

Confidence Interval Belonging Rate Mean Confidence Interval Width

MCMC NN Regression VAE-DS MCMC NN Regression VAE-DS

M 88.90 91.62 62.63 0.08 0.16 0.13
m 85.20 89.47 96.80 0.03 0.06 0.13
sos 85.40 91,19 36.88 10.12 29.90 14.53
mat 84.40 90,58 22.18 10.46 33.29 7.54
sen 84.00 90,54 34.37 6.41 30.14 16.03
eos 83.30 90,24 52.09 7.12 28.89 27.54

Table 3 – 5-95th centiles confidence interval metrics
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Inference performance : inference time

Deep learning methods have much faster inferrence.

Characteristics MCMC NN Regression VAE-DS

Unsupervised X X
Probabilistic X X X
Large Scale X X
Training Dataset None Simulated S2

Inferred distribution
Full

approximate
distribution

Truncated
Gaussian
parameters

Truncated
Gaussian
parameters

Inference Time per time series ≈ 10 s ≈ 10−5 s ≈ 10−5 s

Table 4 – Inference time of phenological distributions (Laptop i5 CPU)

22



Conclusion

Contributions

• New physics-guided unsupervised representation learning methodology.

• Methodology can be used to solve inverse problems.

Envisonned developments

• Encoder complexification

• Apply methodology to more complex physics models, for different data

• Use auxillary neural network to model residuals 4

4. Naoya Takeishi et Alexandros Kalousis. “Physics-Integrated Variational Autoencoders for Robust and
Interpretable Generative Modeling”. In : CoRR (2021).
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Thank you for your attention !

yoel.zerah@univ-toulouse.fr
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