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For crop type (as opposed to crop / non crop) mapping,
photo-interpretation is hard / impossible so better
leveraging (very) small datasets becomes more important

»

»




There is plentiful global data to learn from

Binary Label
Multiclass Label




The CropHarvest dataset

https://qgithub.com/nasaharvest/cropharvest

GeoWiki CropHarvest: a global satellite dataset for crop type
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Gabriel Tseng Ivan Zvonkov
NASA Harvest University of Maryland, College Park
l{a(_lia n l I Y a l-l l] gabrieltseng950gmail.com izvonkov@umd.edu
l ‘oun da l 101 Catherine Nakalembe Hannah Kerner
LARTH IMAGERY FOR IMPACT University of Maryland, College Park University of Maryland, College Park
cnakalem@umd.edu hkernerQumd.edu
Abstract

Remote sensing datasets pose a number of interesting challenges to machine
learning researchers and practitioners, from domain shift (spatially, semantically
and temporally) to highly imbalanced labels. In addition, the outputs of models
trained on remote sensing datasets can contribute to positive societal impacts, for
example in food security and climate change. However, there are many barriers
P|antVi||age that limit the accessibility of satellite data to the machine learning community,
including a lack of large labeled datasets as well as an understanding of the 6
range of satellite products available, how these products should be processed,
and how to manace multi-dimensional eeosnatial data To lower these barriers


https://github.com/nasaharvest/cropharvest

The labels are coupled to remote sensing products

Each label has the following inputs per month, for 12 months:

B2 B3 B4 B5 B6 B7 B8 B8A B9 B11 B12 VV VH preci temp | eleva | topog | NDVI

p tion raphy
Y | \. SRTM DEW
Sentinel 1: Take the median of
Sentinel 2 L1C: Take the available images (and the
least cloudy pixel over the 30 closest available one if none is)
day window Y

ERAS monthly means



This data is very heterogenous

No Label
maize

rice
alfalfa
palm
sugarcane
cassava
potatoes
cotton
groundnuts or peanuts
millet
sunflower
barley
wheat
pulses

® o000 00 ® o0 0000

GFSAD: https://www.croplands.org/app/data/search



https://www.croplands.org/app/data/search

Meta-learning optimizes for many different tasks, instead
of a single task

— meta-learning

9 ---- |learning/adaptation
VLs Optimum for
task 3
VL,
Vﬁl S

4
4 \\

1 N0

Figure 1. Diagram of our model-agnostic meta-learning algo-
rithm (MAML), which optimizes for a representation # that can
quickly adapt to new tasks.

Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." International
conference on machine learning. PMLR, 2017.



Algorithm 1 Model-Agnostic Meta-Learning
Require: p(7): distribution over tasks

— meta-learning Require: «, 3: step size hyperparameters
9 ---- |earning/adaptation 1: randomly initialize 6

ViLs 2: while not done do

3:  Sample batch of tasks 7; ~ p(7T)
VL, .0* 4: for all 7; do
VL Pl 5 Evaluate VL7, (fs) with respect to K examples
P R 6: Compute adapted parameters with gradient de-
te N 0x scent: 0, = 6 — aVo LT (fo)

7:  end for
8: Update 8 <— 0 — Vy Zf,;,vp(fr) L, (fo;)
9: end while
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Algorithm 1 Model-Agnostic Meta-Learning
Require: p(7): distribution over tasks
Require: o, 3: step size hyperparameters

1: randomly initialize 6

— meta-learning

---- learning/adaptation
9 2: while not done do
VLj 3:  Sample batch of tasks 7; ~ p(T)
B s 4: for all 7; do
.3 03 5 Evaluate Vo L7, (fo) with respect to K examples
3 :”' 6 Compute adapted parameters with gradient de-
2 N scent: 0, = 0 — aVoLT,(fo)
1* e 92 7:  end for
9: end while
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This allows us to take advantage of all the information in
the labels, even if they are specific to a region

Kenya task, with groundnut class

— meta-learning

9 ---- |earning/adaptation //

India task, with “peanuts or groundnuts”
class

S8
9* /',, \\\ *
1° '92

Figure 1. Diagram of our model-agnostic meta-learning algo-
rithm (MAML), which optimizes for a representation 6 that can
quickly adapt to new tasks.
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We define two types of tasks to train the model

All tasks have spatial delinatations drawn using bounding boxes for countries

Binary Label =
Multiclass Label

13



We define two types of tasks to train the model

All tasks have spatial delinatations drawn using bounding boxes for countries

@ Crop vs. non crop
tasks

All data points have a crop /
non crop label. All data
points within a country’s
bounding box are included.

Binary Label
Multiclass Label

Land use type vs. rest
tasks

Negative examples are
constructed from the other
crop type labels, and the
non-crop labels.

Also includes specific land
uses, such as “Cerrado” -
natural grassland in Brazil.
Since this is non-crop,
negative examples are
constructed from crop
labels. 14



There is additional information about the tasks we might
want to pass to the model

t-SNE for GeoWiki data

© (Y Africa
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:;‘0;“.‘ %) Euras
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Geographic clustering



How can we pass this information to the model?

Task information: Location
and crop classification

encoding
N
-~
x1 X2 x3 Crop classification encoding
A 3D representation of latitude and longitude A one hot encoding (for crop type) describing
so that distance is respected (i.e. the major crop type (or non crop) being
longitude=180 is close to longitude=-180 in classified. In the case of crop vs. non crop, all
this input space) crop encoding values are equal to 1/n.
lat (_:(),s‘(]at) % (__'(),s'(lon) https://stats-class.fao.uniroma?2.it/caliper/classification-page/43
! ] — |cos(lat) x sin(lon) \W//
lon .
sin(lat) Qﬁ
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https://stats-class.fao.uniroma2.it/caliper/classification-page/43

Task aware meta-learning communicates this task vector
to the MAML model

|

Predictions }

A )
Beta Gamma Beta embedding
embedding embedding : +
\ | Gamma embedding
L\ , *

Classifier }

Hidden vector
Task Encoder

|

Location and crop

Task information:
classification encoding

.
|
|

Satellite input data }
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[ Predictions ]
Task Encoder

[ Classifier ] Algorithm 1: Task-Informed Meta-Learning

Require: p(7): Distribution over tasks
Require: «, 3: step size hyperparameters
randomly initialize meta model 6,,,, task encoder 6,
while not done do

Sample batch of tasks 7; ~ p(T) with task informa-
tion t;

Task information:
Location and crop [ Satellite input ]
classification encoding data

SR D kD)

' 6: for all 7;.t; do

— g::si:‘e; /ran(;ggtation 1 Generate task embeddings p; = f(t;;0.)

0 8: Evaluate Vg_ L7, (fo,., iti) with respect to K ex-
VL amples
9: Compute adapted meta parameters with gradient
ch descent: 6.« 0,, — aV, L Ty....iiz)
o 9* m; m i m
v£1 /// 3 10: Update 0,,, + 0., — ,BV()M ZﬂNp(T),Cﬂ (f(,;n g /Lqi)
. /,’/ \\\ 11: Update 0. < 0,, — JBVQ@ ZTZ'N])(T)‘CT?; (f():n . ,uz')
1% ~0; z
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[ Predictions ]

Algorithm 1: Task-Informed Meta-Learning

[ Classifier ]

Require: p(7): Distribution over tasks
Require: «, 3: step size hyperparameters
randomly initialize meta model 6,,,, task encoder 6,
while not done do
Sample batch of tasks 7; ~ p(T) with task informa-
tion t;
for all 7;,%; do
Generate task embeddings p; = f(t;;0.)
Evaluate Vg_ L7, (fo,., iti) with respect to K ex-
amples
Compute adapted meta parameters with gradient

descent: 9;,%_ — 0, — Vo, L7,(fo,., 1)
Update O, < 0 — BV o, X7, mp(T) LT (for s 1)
Update 0. — 0,, — 5V98 EﬂNp(T)Eﬂ(fQ:ni 5 Nz’)

| &
2
3
[ Satellite input ] s
data o
. 6:
— meta-learning 7.
9 ---- learning/adaptation 3:
VL 9
VL, o

Vﬁl ”"f” 3 10
) //,’ \\ 11

1% 05
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— meta-learning

0 ---- |earning/adaptation
VL3
VL
ve! N\ 03

* ,’, \\\
1° -0,

Figure 1. Diagram of our model-agnostic meta-learning algo-
rithm (MAML), which optimizes for a representation 6 that can
quickly adapt to new tasks.
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— meta-learning

0 ---- |earning/adaptation
VL3
VL
VL s

* ,’, \\\
1° -0,

Figure 1. Diagram of our model-agnostic meta-learning algo-
rithm (MAML), which optimizes for a representation 6 that can
quickly adapt to new tasks.
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Task informed meta-learning

One embedding per layer in the classifier [/ Linear Layer i ] G
P

=l } = | S

Beta embedding erﬁsgjm ] Beta embedding

+ Linear
[ Gamma embedding ] Classifier

T : :

MLP MT /] h,
LSTM H LSTM } LSTM

Task information: Location s
and crop classification

encoding X, X, X;

22



Task informed meta-learning

One embedding per layer in the classifier [/

X
-
e ——
Beta embeddin Gamma [ Beta embedding ]
< embedding + Linear
[ Gamma embedding ] Classifier
I )

]

Task information: Location
and crop classification
encoding

LSTM




Forgetfulness consists of removing tasks the model has

memorized

@ Crop vs. non crop
tasks

All data points have a crop /
non crop label. All data
points within a country’s
bounding box are included.

Binary Label
Multiclass Label

Land use type vs. rest
tasks

Negative examples are
constructed from the other
crop type labels, and the
non-crop labels.

Also includes specific land
uses, such as “Cerrado” -
natural grassland in Brazil.
Since this is non-crop,
negative examples are
constructed from crop
labels. 24



We benchmark this algorithm against a number of others

e MAML: Normal MAML without the task information

e Pretrained: Pretrain the model on crop / non crop with all datapoints, and
finetune on the test task

e Random: Start with random weights, and finetune on the test tasks

e And a Random Forest

25



We benchmark this algorithm against a number of others

e MAML: Normal MAML without the task information
e Pretrained: Pretrain the model on crop / non crop with all datapoints, and

finetune on the test task
e Random: Start with random weights, and finetune on the test tasks

e And a Random Forest

And ablations:

e No forgetfulness
e No encoder
e No task information or encoder
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We use 3 test-tasks which evaluate the model in a variety

of regimes

Togo crop vs. non crop.

1,319 training samples with a
randomly sampled test set of 350
points labelled by 4 labellers

Kenya maize vs. rest

Evaluated using polygons, with
266 positive datapoints and 1075
negative datapoints.

Used 17 positive polygons for
testing

Brazil coffee vs. rest

Evaluated using polygons, with 21
positive datapoints and 206
negative points.

Used 18 positive polygons used
for testing. 27



Headline results: TIML performs best across all 3 tasks

Model Kenya Brazil Togo  Mean
Random Forest 0.578 £ 0.006 0.941 £+ 0.004 0.892 £ 0.001  0.803

| No pre-training 0.329 + 0.011 0.898 + 0.010 0.861 +0.002  0.700
8 Crop pre-training 0.694 = 0.001 0.820 £ 0.002 0.894 £+ 0.000 0.801
& |MAML 0.729 £ 0.001 0.831 + 0.005 0.878 £ 0.001  0.843
8 TIML 0.794 4+ 0.003 0.988 4 0.001 0.890 £0.000 0.890
< no forgetfulness 0.779 = 0.003 0.877 + 0.003 0.893 £0.001  0.850
o no encoder 0.712+0.001 0.977 £0.002 0.895 + 0.000 0.862
no task info or encoder 0.690 + 0.001 0.977 + 0.002 0.876 =0.001  0.848

Random Forest 0.559 £+ 0.003 0.000 £ 0.000 0.756 £+ 0.002 0.441

e NO pre-training 0.782 4+ 0.000 0.764 £ 0.012 0.720 £0.005 0.734
o Crop pre-training 0.819 £+ 0.001 0.619 £ 0.005 0.713 £ 0.002 0.613

S |[MAML 0.828 + 0.001 0.496 £ 0.001 0.662 £0.001  0.652
= |TIML 0.838 £0.000 0.835 4 0.012 0.732+0.002 0.802
no forgetfulness 0.840 4 0.000 0.537 +0.002 0.764 +0.002 0.724

— no encoder 0.840 4 0.000 0.473 £+ 0.002 0.691 +0.001  0.691
no task info or encoder 0.837 £ 0.001 0.473 £ 0.001 0.645 + 0.002  0.652
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Headline results: TIML performs best across all 3 tasks

Model

AUC ROC

Random Forest
No pre-training
Crop pre-training
MAML

TIML
no forgetfulness
no encoder
no task info or encoder

F1 score

Random Forest
No pre-training
Crop pre-training
MAML

TIML
no forgetfulness
no encoder
no task info or encoder

Mean

0.803
0.700
0.801
0.843

0.850
0.862
0.848

0.441

0.734
0.613
0.652

0.724
0.691

0.652
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Transfer learning isn’t guaranteed to help!

Model Kenya
Random Forest 0.578 £ 0.006

No pre-training 0.329 £+ 0.011

8 Crop pre-training 0.694 = 0.001
¢ MAML 0.729 4 0.001
S TIML 0.794 + 0.003
< no forgetfulness 0.779 4 0.003
no encoder 0.712 + 0.001

no task info or encoder 0.690 + 0.001
Random Forest 0.559 £+ 0.003

No pre-training 0.782 + 0.000

o Crop pre-training 0.819 £+ 0.001
S MAML 0.828 + 0.001
— TIML 0.838 4 0.000
no forgetfulness 0.840 4 0.000

no encoder 0.840 4 0.000

no task info or encodej 0.837 + 0.001
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Transfer learning isn’t guaranteed to help!

Model

AUC ROC

Random Forest
No pre-training
Crop pre-training
MAML

TIML
no forgetfulness
no encoder
no task info or encoder

F1 score

Random Forest
No pre-training
Crop pre-training
MAML

Brazil

‘ 0.941 + 0.004 |
0.898 + 0.010
0.820 = 0.002
0.831 + 0.005

TIML
no forgetfulness
no encoder
no task info or encoder

0.000 + 0.000
0.764 + 0.012
0.619 + 0.005
0.496 + 0.001
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Forgetfulness especially helps in Brazil

Model

Brazil

AUC ROC

Random Forest
No pre-training
Crop pre-training
MAML

0.941 + 0.004
0.898 + 0.010
0.820 + 0.002
0.831 £ 0.005

TIML
no forgetfulness
no encoder
no task info or encoder

0.988 £+ 0.001
0.877 £ 0.003
0.977 £+ 0.002
0.977 £ 0.002

F1 score

Random Forest
No pre-training
Crop pre-training
MAML

TIML
no forgetfulness
no encoder
no task info or encoder

0.000 + 0.000
0.764 £+ 0.012
0.619 + 0.005
0.496 + 0.001

0.835 4 0.012
0.537 + 0.002

0.473 = 0.002
0.473 £ 0.001
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TIML improves model performance across a range of
finetuning dataset sizes

0.90 A

0.8
¢ o ¢ ¢ &
e = & = & RS ER A ER
g O * 4 4 & @ v 085 1 % # "
o )
O O
‘06 ‘) 0.80 1
3 } * . t S \ ¢ TIML
«
w 051 Qorsd | , MAML.
= )\ + + =, 4 Pretrained
0.4 1 * + + + * ] ¥ Random Weights
Y S 4 Random Forest

20 40 60 80 o0 130 0 200 400 600 800 1000 1200
Training sample size Training sample size

(a) Kenya: Maize vs. Rest (b) Togo: Crop vs. Non Crop



TIML applies elsewhere too: yie

b4

e

g

Fully
conn-
ected

layer

g

LST™M
Cell

2

LST™M
Cell

LST™M
cell

g

" l;.-.
l;.-.

input

input

input

(i) Low yield (i) Mid yield (iii) High yielhd'

(b) The LSTM structure

(a) 3-D histogram visualization

d estimation (regression)

il

(c) The CNN structure

Figure 1: Visualization of the input data and used architectures. Left: Figures of typical 3-D histograms € R®*7*¢ flattened
in the band dimension d under (i) low crop yield, (ii) mid crop yield, and (iii) high crop yield conditions are shown in the left
panel. Each row corresponds to a different spectral band, while each column represents an individual data point. Each square is
a slice of H, where the z-axis corresponds to the “time” dimension 7", and the y-axis to the “bin” dimension b. Brighter pixels
indicate higher pixel counts in that bin. There exists distinctive visual differences between high yield and low yield conditions
(for example in the second and the seventh bands). Mid: The adopted LSTM structure. Right: The adopted CNN structure,
where stride-1 convolutional layers are in light blue, stride-2 convolutional layers are in dark blue and a fully connected layer

is attached at the end.

You, J., Li, X., Low, M., Lobell, D., and Ermon, S. Deep Gaussian process for crop yield prediction based on remote sensing data. Proceedings of the AAAI Conference on Atrtificial Intelligence, 2017
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Overall, TIML performs well in this regime too

~—

2011

2013

Model 2012 2014 2015 Mean

LSTM 5.624-0.10 6.60 = 0.29 5.97 =0.21 6.63 £0.13 6.69 + 0.31 6.22
+ GP 5.32+0.10 5.83 +0.18 5.70 =£0.19 5.61+0.12 5.244+0.14 5.54
+ MAML 26.90 £0.01 30.97+0.01 29.57+0.01 30.84+0.01 32.02+0.01 30.06
+ TIML 5.16 £ 0.03 5.77+0.05 5.39+0.02 5.244+0.04 4.891+0.04 5.29

CNN 6.08 = 0.77 6.94 + 1.83 6.42+1.23 4.80 4+ 0.83 5.57 +0.38 5.96
+ GP 5.55 +0.14 6.18 = 0.49 6.44 +0.67 4.87+0.31 6.02 + 0.26 5.81
+ MAML 12.93 +0.05 8.28 + 0.07 7.98+0.04 12.05+£0.05 7.69 = 0.06 9.79
+ TIML 5.23 4+ 0.02 6.59 +0.02 5.34 £+0.01 4.93 £+ 0.02 6.35 = 0.01 5.69

(You et al., 2017)

LSTM + GP 5.77 6.23 5.96 5.70 5.49 5.83

CNN + GP 5.70 5.68 5.83 4.89 5.67 555
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We rerun the GP models, since the MODIS data has
incrgmented versions

2013

Model 2011 2012 2014 2015 Mean

LSTM 5.62 £ 0.10 6.60 £ 0.29 5.57 £ 0.21 6.63 = 0.13 6.69 £+ 0.31 6.22
+ GP 5.32+0.10 5.83+0.18 5.70 £ 0.19 5.61+0.12 5.24+0.14 5.54

CNN 6.08 £ 0.77 6.94 £+ 1.83 6.42+1.23 4.80+ 0.83 5.07+0.38 5.96
+ GP 5.556 +0.14 6.18 = 0.49 6.44 £0.67 4.87 1+ 0.31 6.02+0.26 5.81

(You et al., 2017)

LSTM + GP .77 6.23 5.96 5.70 549 5.83

CNN + GP 5.70 5.68 5.83 4.89 5:67 5.55

36



TIML is the best performing algorithm for each architecture

~—

2011

2013

Model 2012 2014 2015 Mean

LSTM 562+£0.10 6.60+£0.29 557+021 6.63+0.13 6.69+031 622
+GP 532+£0.10 5.83+0.18 570+0.19 561+0.12 5.24+0.14 5.54
+ MAML 26.90£0.01 30.97+£0.01 29.57+£0.01 30.84+0.01 32.02+0.01 _30.06
+ TIML 5.16 +0.03 5.77+0.05 5.39+0.02 524+0.04 4.89+0.04

CNN 6.08£0.77 6.94+1.83 6.42+1.23 4.80+0.83 557038 5.96
+GP 555+0.14  6.18+0.49 6.44+0.67 4.87+0.31 6.02+0.26 581
+ MAML 12.93+£0.05 828+0.07 7.98+0.04 12.05+0.05 7.69+0.06 __9.79
+ TIML 5.234+0.02 6.59+£0.02 5.344+0.01 4.93+£0.02 6.35+0.01

(You et al., 2017)

LSTM + GP 577 6.23 5.96 5.70 549  5.83

CNN + GP 5.70 5.68 5.83 4.89 567 555
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TIML does well even when MAML performs poorly

Model 2011

2013

2012 2014 2015 Mean

+ MAML 26.90 +0.01 30.97+£0.01 29.57+0.01 30.844+0.01 32.02+0.01 30.06

+ TIML 5.16 £ 0.03 5.77 +£0.05 5.39 £ 0.02 524 +£0.04 4.89+4+0.04 5.29

+ MAML 12.93 +0.05 8.28 £ 0.07 7.98+0.04 12.05+0.05 7.69+0.06 9.79

+ TIML 5.23 1+ 0.02 6.59 +£0.02 5.34 +0.01 4.93 £+ 0.02 6.35 £ 0.01 5.69
(You et al., 2017)

LSTM + GP .77 6.23 5.96 5.70 549 5.83

CNN + GP 5.70 5.68 5.83 4.89 5:67 5.55
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In conclusion:

- We introduce Task-Informed Meta-Learning, an algorithm which:

- Encodes task information to inform meta-learning algorithms
- Uses forgetfulness to boost performance in rare tasks

- We introduce CropHarvest, an aggregate dataset of agricultural land cover
coupled with remote sensing data

- We demonstrate the applicability of TIML on crop classification and yield
estimation, on a variety of model architectures

39



Code and models available on github

https://github.com/nasaharvest/timl

https://qgithub.com/nasaharvest/cropharvest
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