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Reinforcement learning
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RL vs DRL

RL-table DRL-deep NN
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Software considerations
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Chainer RL

* Ease of use

e Scalability

e Active development

* Environment agnostic
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Software considerations

We need the gym.Env class

Gym is a toolkit for developing and comparing

reinforcement learning algorithms. It supports teaching
agents everything from walking to playing games like
Pong or Pinball.

The init() method. Which in turn must initialize two required members as Gym spaces:

*self.action_space — the action space of possible actions taken by the agent
*self.observation_space — the observation space for what info the agent receives after taking an action

The reset() method. This resets the state of the environment for a new episode and also returns an initial observation

The step() method. Handles how an agent takes an action during one step in an episode.

The render() method. Allows to visualize the state of the environment.

The seed() method. Allows to set a seed for environments pseudorandom number generator.

The close() method. Defines how to handle closing an environment.
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Improving connectivity through habitat restoration Eesa

Lets define a biological corridor as a structure which allows the transit of individuals between large or small
populations.

Sites that allow the transit between populations are essential for promoting and maintaining their genetic health.

Landscape Graph representation
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Improving connectivity through habitat restoration Eesa

Landscape Graph representation

* a; and a; are the areas of the habitat patches 2 and . l C

o Aj is the total landscape area.

. p;j Is defined as the maximum product probability of all possible paths between patches 1
and j. The product probability of a path (where a path is made up of a set of steps in
which no patch is visited more than once) is the product of all the p;; belonging to each

step in that path.
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Improving connectivity through habitat restoration

The init() method. will create a gridded landscape

self.action_space — the agent may move left, right, up, down, add a habitat pixel
*self.observation_space — the agent sees the whole landscape matrix

The reset() method. each episode ends when the agent adds 20 habitat pixels.
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Improving connectivity through habitat restoration Eesa

2 THE EUROPEAN SPACE AGENCY



Improving connectivity through habitat restoration Eesa

2 THE EUROPEAN SPACE AGENCY



Improving connectivity through habitat restoration Eesa

2 THE EUROPEAN SPACE AGENCY



Improving connectivity through habitat restoration Eesa

1000 1500

500

2 THE EUROPEAN SPACE AGENCY



Improving connectivity through habitat restoration
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Improving connectivity through habitat restoration

Well connected,
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Badly connected,
low PC
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Eesa

Improving connectivity through habitat restoration
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Pros

* |t offers a clear way to tackle complex decision

making tasks
* You do not necessarily need to know the explicit

equations governing your learning task
* |If used creatively it can scale in ways that have not

been seen before

Cons

* It's hard for the models to know exactly which
actions in a sequence lead to a reward (sparse
rewards, credit assignment problem)

* tends to be quite sample inefficient. For some
complex problems initial random exploration fails
completely

* tends to overfit reward functions so designing
rewards is extremely difficult
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