

Monitoring Saltmarsh Erosion Using Cumulative Sums of Sentinel-1 Timeseries

Daniel Atton Beckmann¹, Dr Armando Marino¹, Javier Ruiz Ramos²

¹ University of Stirling, Biological and Environmental Sciences, Stirling, UK
² Open University, Engineering and Innovation, Milton Keynes, UK

Background and Motivation

Saltmarshes: Importance

- Coastal wetlands that flood and drain with the tide
- They provide many important ecosystem services:
 - coastal flood defence
 - habitat for bird species
 - nursery grounds for fish and crustaceans
 - carbon storage
- European saltmarsh resources are covered by multiple international and national nature conservation designations

Saltmarshes: Conservation Issues

- Saltmarsh area in Europe is considered to be generally declining
- The conservation status of saltmarshes in Europe is generally rated unfavourable
- Increasing saltmarsh erosion is caused by:
 - Agricultural, industrial and urban development ('coastal squeeze')
 - Rising sea levels
- Saltmarsh erosion may lead to:
 - Loss of biodiversity
 - Increased flood risk
 - Release of carbon stores

Saltmarshes: Monitoring Erosion

- Clearly important!
- Typical methods include:
 - Field surveys
 - By-eye analysis of aerial photographs
- These methods are time consuming and less effective for continuous monitoring

Synthetic Aperture Radar (SAR)

- Measures the return intensity of a transmitted radar signal from space
- Generally not hindered by cloud cover or low-light levels
- Changes in the roughness, geometry or moisture content of a target can be detected
- Useful for monitoring vegetated areas such as saltmarsh!
- Has been used for wetlands monitoring, but mainly for mapping and studying water dynamics

CUSUM Algorithm

CUSUM Algorithm

 Previously used for forest monitoring (Ruiz-Ramos et al. 2020):

- A reference mean (clutter) image is subtracted from each image in the timeseries
- The resulting difference images are cumulatively summed
- This amplifies persistent changes

Reference Mean (clutter)

Study Site and Data

Solway Firth Marsh, Scotland

- Site of Special Scientific Interest
- Special Protection Area
- Special Area of Conservation
- Highly dynamic environment with both erosion and accretion occurring in different areas

Ground Truth Data

- Sentinel-2 (S2) RGB images (10m resolution)
- Coastal marsh extents drawn by eye for 1 S2 image in summer 2017 and 1 S2 image in summer 2020
- Areas of erosion, accretion and no change identified from this

S2 2017-07-17

S2 2020-06-01

- Sentinel 1 timeseries, VV
- 6-day revisit time
- 2017 2020 (Using 2017 as the reference mean)

S1 2020-06-01

Sentinel-2 Visible 2017-07-17

Sentinel-2 Visible 2020-06-01

Sentinel-1 VV 2017-07-23

Sentinel-1 VV 2020-06-01

CUSUM up to June 2020

S2 changes identified by eye

Visual Inspection

The areas of erosion appear as dark in the CUSUM

The areas of accretion appear as bright in the CUSUM

S2 - Erosion S2 - Accretion S2 - No Change

Designing a statistical test: Defining 'Clutter'

- We want to model the CUSUM signal when no (significant) changes to shoreline are occurring
- We use March to September 2017 (spring and summer)
- It is less likely to include changes consequence of storms
- Avoids using the start/end of 2017 which are forced to be zero

Designing a statistical test: clutter pdf

Clutter (mar-sept 2017)

- We fitted a Generalized Normal Distribution to the clutter data
- Issues with the tails some improvement needed here
- We defined the detection thresholds using Constant False Alarm Rates)

Inspecting the CUSUM timeseries – with detection thresholds

Evaluating Performance

- We tested a range of different Constant False Alarm Rates (alpha) against the ground truth data
- Evaluation using Receiver Operating Characteristic (ROC) curves for both erosion and accretion classification

Evaluating Performance

- We evaluation F1 score, Cohen Kappa Score, Overall Accuracy
- The value of alpha=0.2 is best for erosion and accretion classification
- The lower alpha is best for nochange classification

	Accretion			Erosion			No Change			Summary		
Alpha	F1 Score	TPR	FPR	F1 Score	TPR	FPR	F1 Score	TPR	FPR	Weighted F1 Score	Cohen Kappa Score	Overall Accuracy
0.2	0.68	0.73	0.32	0.69	0.68	0.23	0.11	0.08	0.08	0.60	0.36	0.62
0.1	0.66	0.71	0.31	0.68	0.66	0.22	0.13	0.12	0.11	0.60	0.34	0.61
0.05	0.66	0.69	0.30	0.68	0.65	0.20	0.18	0.18	0.13	0.60	0.35	0.60
0.01	0.64	0.66	0.28	0.67	0.61	0.17	0.21	0.25	0.19	0.60	0.33	0.58
0.001	0.62	0.59	0.23	0.65	0.57	0.14	0.23	0.36	0.27	0.58	0.31	0.55
0.0001	0.57	0.52	0.22	0.64	0.54	0.12	0.24	0.42	0.34	0.56	0.28	0.52

Detecting areas of concern

- We can look at entire CUSUM timeseries
- We use constant false alarm rate of 1%
- Identify when the erosion and accretion first occurred (recent changes coloured lighter, long-term changes darker)

Conclusions

- SAR CUSUM algorithm can be used to identify erosion and accretion in a saltmarsh environment
- This allows for detection of both short and long-term changes
- Further work required to:
 - Evaluate with improved ground truth dataset (drone imagery?)
 - Improve clutter definition and distribution fit
 - Evaluate for other saltmarsh systems

Thanks you for your attention