Biodiversity from remote sensing of coastal areas for science and societal applications

Stefanie Broszeit, Victor Martinez Vicente, Shubha Sathyendranath, Steve Widdicombe, Thomas Jackson, Emma Sullivan, Katie Awty-Carroll, Angus Laurensson, Pierre Gernez, Laurent Barille, Simon Oiry, Didier Ramon, François Steinmetz, Dimosthenis Traganos, Avi Putri Pertiwi, Gemma Kulk

www.bicome.info

BiCOME is funded by the European Space Agency (ESA) ESA contract no. 4000135756/21/I-EF

BiCOME GOAL

To develop and to demonstrate that Essential Biodiversity Variables (EBVs),

relevant for scientific and monitoring applications,

can be obtained from state-of-the art remotely sensed reflectance

close to the shoreline

and can be scalable globally.

Addressing relevant scientific and societal problems.

COASTAL OCEANS

Provide many ecosystem services such as climate regulation, food provision, recreational services

Difficult to measure marine biodiversity due to cost, ocean and weather conditions, time intensive, dangerous.

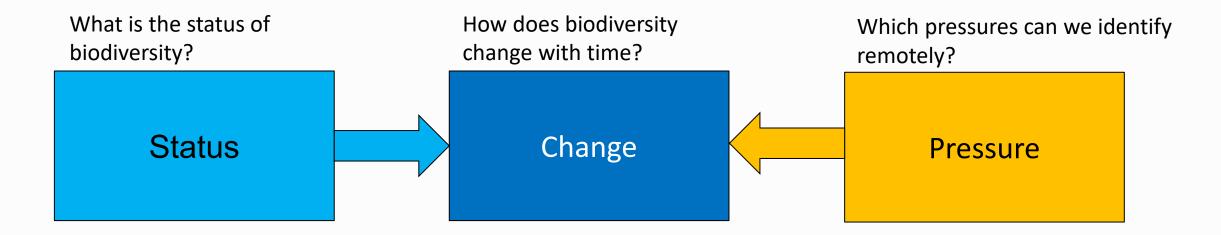
Measurements often not standardized!

Indicators (EBVs) need to be measurable, affordable, easy to access, consistent, comparable

Knowledge gaps (IPBES, 2019)

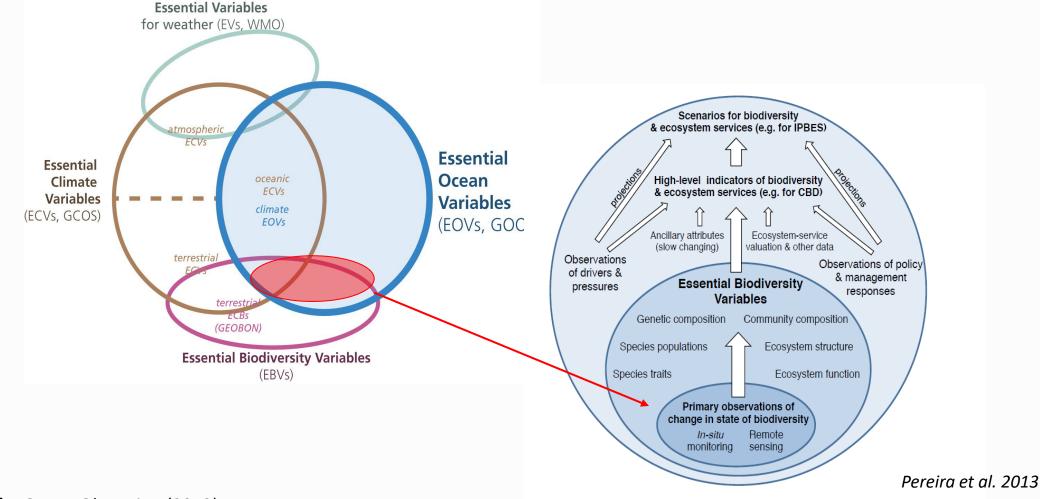
We need new, more automated observing methods.

These require collaboration between science and policy sectors


to improve capacity around the globe.

(Miloslavich et al. 2018)

Sector	Knowledge gaps (in data, indicators, inventories, scenarios)
Data, inventories and monitoring on nature and the drivers of change	 Data on ecosystem processes (including rates of change) that underpin nature's contributions to people and ecosystem health Data from monitoring of ecosystem condition (generally less well represented than ecosystem extent)
Gaps on biomes and units of analysis	 Inventories on under-studied ecosystems: freshwater, Arctic, marine/ocean, seabed, and wetlands


Scientific questions

Pressures include overexploitation, land/sea use changes, climate change, pollution

Essential Ocean Variables and Essential Biodiversity Variables

Framework for Ocean Observing (2012)

Slide from Muller-Karger MBON (2021)

Approach

- Mapped EOV for each environment studied to the EBV:
 - Intertidal seagrass extent and macroalgae
 - Subtidal seagrass
 - Floating vegetation
- Mapped the EBV-EOV-Environment to the observable variables
- Link to policy and monitoring initiatives
- Early Adopters

	Research focus	Reason for monitoring	Reason for joining BiCOME
Syndicate Mixte Baie de Bourgneuff	Impact of recreational and commercial clam fishing in seagrass beds Map Sabellaria reefs in relation to anthropogenic pressures	To manage Natura 2000 site, Water Framework Directive	To be able to get more and more regular data than through fieldwork (both spatial and temporal extent)
Nantes			

Defining the products they need

EBV Species population – Distribution – Presence/Absence for seagrass

Benthic inverts (in development)

Ecosystem structure – Live cover

Ecosystem extent

SMBB	Current	Best	Workable	Minimum
Survey area	Baie de Bourgneuff	Same	Same	Same
Spatial resolution	One reef only Fieldwork	10 m seagrass, < 1m for polychaete reefs	20 m seagrass, 1 m for polychae te reefs	30 m seagrass, 1 m for polychaete reefs
Temporal resolution	Not regular	1 month ⁻¹	1-2 year ⁻¹	1 year-1
Level of detail of measurements	Seagrass extent and percentage cover, polychaete reef extent and percentage cover (one reef only)	Seagrass extent and percentage cover, polychaete reef extent and percentage cover		

Subtidal case study - Mozambique

		Reason for monitoring	Reason for joining BiCOME
Archipelago National Park	monitoring area (currently mostly	beds sustainably,	To be able to use RS in the regular monitoring of the research area

EBV

Species population – Distribution – Occurrence probability for seagrass

Ecosystem structure – Live cover - Ecosystem extent Ecosystem distribution

Ecosystem function – Disturbances - Eutrophication

Bazaruto National Park	Current	Best	Workab le	Minimu m
Survey area	Small areas of BANP only	3000 km²	3000 km²	1400 km²
Spatial resolution	3 m (but fieldwork)	5-10 m	15 m	30 m
Temporal resolution	1-2 year ⁻¹	4 year-1	4 year-1	4 year ⁻¹
Level of detail of measurements	Species of seagrass, dugong tracks			

Pelagic

	Research focus	Reason for monitoring	Reason for joining BiCOME
Lake Vembanad, India	rafts and phytoplankton, zooplankton blooms	manage health threats due to Cholera, and to	They would like better access to RS data in formats that are easier to access

Lake Vembanad, India
EBV
Species population – Distribution – Presence/Absence

Ecosystem structure - Extent

NERCI	Current	Best	Workabl e	Minimu m
Survey area	100 km²	same	same	same
Spatial resolution	500 m	5 m	10 m	20 m
Temporal resolution	Monthly	every 2- 3 days	every 4- 5 days	every 16 days but reliable
Level of detail of measurem ents	Phytoplankt on, zooplankto n, benthos			

To conclude

Science Policy Traceability Matrix: Essential Ocean Variables connected to Essential Biodiversity Variables and to relevant Remote Sensing products

1. Time linking RS products to Biodiversity Monitoring and fitted to requirements

Requirements are stringent and signal the way forward for future development

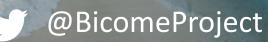
High spatial and temporal resolution is needed but sensors are not specifically designed for coastal waters

Coastal biodiversity related Remote sensing products are specially challenging in optically-complex water

Future steps

EBV that are not dealt with within the project. e.g. community composition effects on ecosystem function Explore new technologies such as hyperspectral sensors

Thank you!


NantesUniversité

Intertidal lead

PML Plymouth Marine Laboratory

And to all Early Adopters!

www.bicome.info

• Cesa BiCOME is funded by the European Space Agency (ESA)