

Copernicus Sentinel-2 and Landsat Missions: Cooperation and Coordination Activities in Cal/Val Harmonization

Valentina Boccia¹, F. Gascon¹, R. Q. Iannone², E. Cadau³, G. Doxani³, C. Anderson⁴, J. Barsi⁵, M. J. Choate⁴, C. Crawford⁴, S. Labahn⁴, J. Masek⁵, N. Pahlevan⁵, R. Rengarajan⁴, S. Skakun⁶, J. C. Storey, J.C. Roger⁶, K. Thome⁵, E. Vermote⁵

¹ ESA, ² Rhea Group Spa, ³ Serco Italia Spa, ⁴ USGS, ⁵ NASA, ⁶ University of Maryland

THE EUROPEAN SPACE AGENCY

Sentinel-2 & Landsat

Coordination on Cal/Val and data quality activities becomes even more crucial when data from different satellites are **used by users worldwide in a complementary and synergetic manner**.

Data quality has enormous downstream impacts on the accuracy and reliability of the products;

Facilitate cross-calibration and interoperability;

Support synergetic use of data coming from different sensors/satellites

💳 💶 📲 🚍 🔚 🔚 🔚 🔚 🔚 📲 📲 📲 🔤 🔤 🚺 📜 🗮 📲 🖛 ன ன 🖉

S2 – Landsat : Harmonisation **Overview** \checkmark

Geometry :

- S2 GRI (Global Reference Image) \checkmark
- Copernicus DEM (Digital Elevation Model) \checkmark
- DEMIX (DEMs Intercomparison eXercise) \checkmark
- DGG (Discrete Global Grid System) \checkmark
- Level-1 Radiometry : \checkmark
 - Sensor radiometric inter-comparison using an integrating sphere \checkmark
 - S2 inspired by Landsat-8 bands \checkmark
 - Absolute radiometry inter-comparison
- Level-2A Radiometry and Cloud Mask: \checkmark
 - ACIX (Atmospheric Correction Intercomparison eXercise) \checkmark
 - CMIX (Cloud Mask Intercomparison eXercise) \checkmark
 - CARD4L \checkmark
- Level-2H and Level-2F \checkmark
 - Sen2Like
- Other \checkmark

Geometry / S2 GRI

- Sentinel-2 EO data processor has been upgraded to improve geolocation and multi-temporal co-registration;
- Processing is now based on the usage of the **GRI (Global Reference Image)**, as source of Ground Control Points (GCPs);

It is a full repeat cycle dataset of well-localized and as cloud-free as possible mono-spectral (band 4) Sentinel-2 Level-1B products

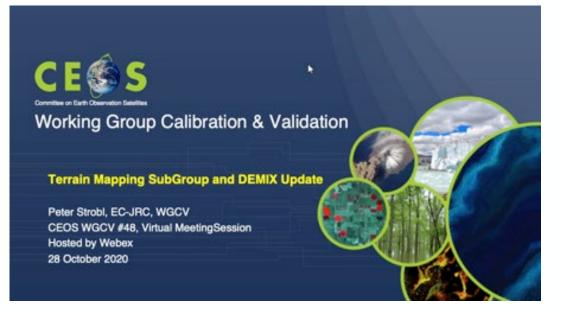
→ THE EUROPEAN SPACE AGENCY

Geometry / Copernicus DEM

- The Copernicus DEM includes three instances with different resolutions:
 - 90 meter dataset for global coverage (open and free);
 - 30 meter dataset for global coverage (open and free);
 - 10 meter dataset for the EEA-39 area (restricted to eligible users).
- > All Copernicus Program DEM instances are available at: <u>https://spacedata.copernicus.eu/</u>
- USGS is evaluating the Copernicus DEM and considering its usage for Landsat Collection-3.
- If it materialises, this would further improve the geometric harmonisation, in terms of:
 - Landat Sentinel-2 co-registration;
 - Absolute geo-location (for regions where Copernicus DEM is better than currently used Landsat DEM).

Geometry / DEMIX

DEMIX = DEMs Inter-comparison eXercise

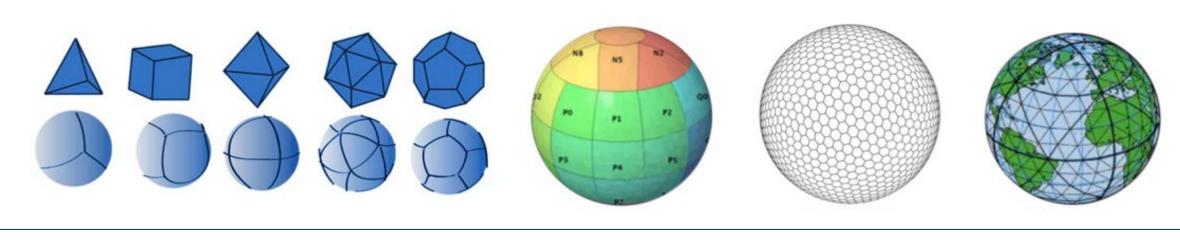

✓ To identify a consistent and comprehensive DEM definitions and terminology;

✓ To define a base and extended set to benchmarking metrics and respective algorithms with open source tool able to provide accuracy at pixel level;

✓ To perform detailed comparison results on test areas and aggregated wall to wall benchmarking results;

✓ To provide recommendation of a reference DEM and consistently orthoimage;

 \checkmark To elaborate a final reports and peer-reviewed publications.

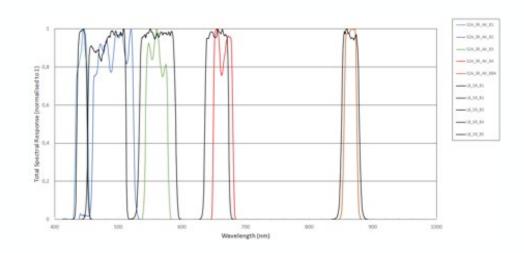

✓ It includes comparison of Sentinel-2 DEM (Copernicus DEM) and Landsat DEM (NASA DEM).

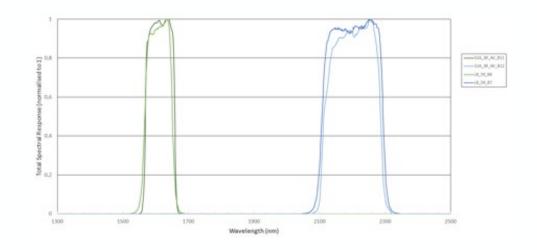
Participants: JRC, ESA, USGS, EOXPLORER
 UG, Department of Oceanography, US Naval
 Academy, Yale University, VisioTerra, Imaging
 Group, LatinGEO, University of Sao Paulo.

Geometry / DGGS



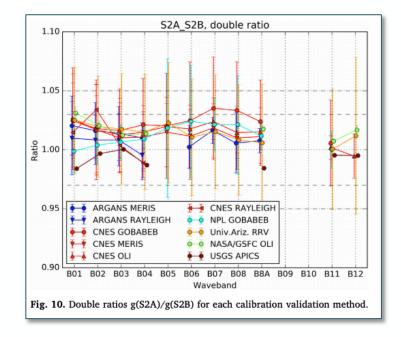
- ✓ Need to explore innovative approached to organise, store, manage and analyse EO imagery.
- ✓ ESA has initiated an activity to assess and prototype the usage of DGGS (Discrete Global Grid System) for Sentinel-2 data;
- ✓ Expectation to have a unified framework for EO data seamless integration, multi-source data fusion and cloud computing on a global scale.
- ✓ The goal is therefore to assess the feasibility of adopting DGGS for Sentinel-2 data and testing them for Analysis Ready Data (ARD) products Level-2A, Level-2H and Level-2F;
- Exchanges on the subject with USGS.


TOA Radiometry / Pre-flight


- EUSGS Cesa
- Sensor absolute radiometry inter-comparison using an integrating sphere.
 - https://landsat.gsfc.nasa.gov/article/esa-nasa-collaboration-fosters-comparable-land-imagery

✓ Sentinel-2 "inspired" by Landsat-8 bands.

 \checkmark

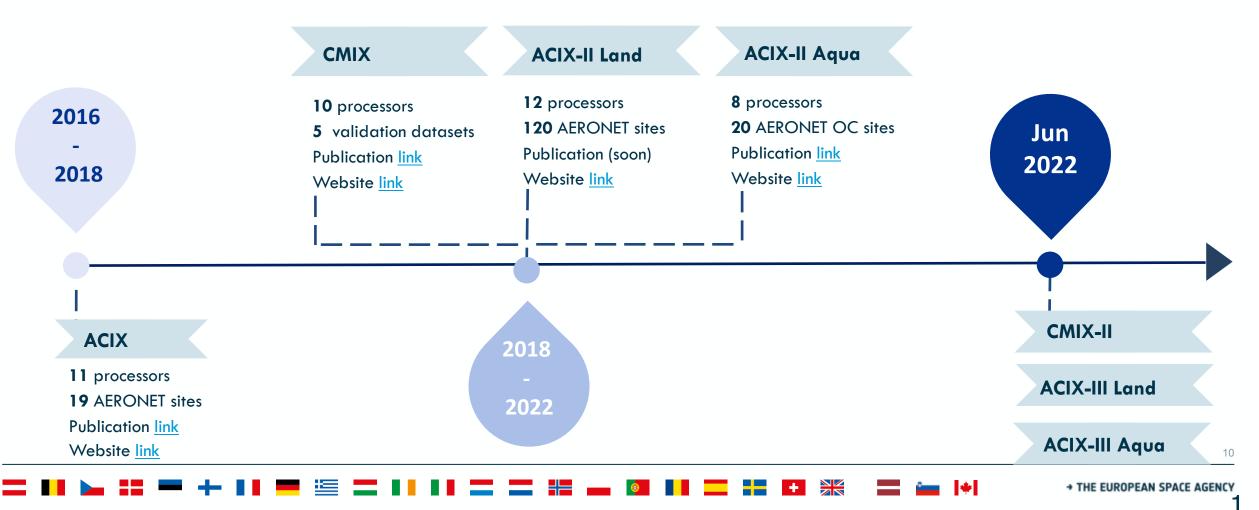


TOA Radiometry / In-flight

✓ Absolute radiometry inter-comparison with NASA/GSFC and University of Arizona teams involved.

✓ S2B radiometry will be matched with S2A in Sentinel-2 Collection 1, S2A being at the same time the S2 sensor closer to Landsat-8.

	Remote Sensing of Environment 233 (2019) 111369
	Contents lists available at ScienceDirect Remote Sensing of Environment
ELSEVIER	journal homepage: www.elsevier.com/locate/rse
An inter-compar by independent (ison exercise of Sentinel-2 radiometric validations assessed
Yves Govaerts ^d , Vinc	amma Woolliams ^b , Véronique Bruniquel ^a , Ferran Gascon ^c , Javier Gorroño ^b , ent Leroy ^d , Vincent Lonjou ^e , Bahjat Alhammoud ^f , Julia A. Barsi ^g , ers ^b , Joel McCorkel ^g , Dennis Helder ⁱ , Bruno Lafrance ⁱ , Sebastien Clerc ^a ,
ESA/ESRIN, Largo Gahleo Gahlei I Ragference, Avenue Paul Deschanei Centre National d'Esudes Spatiales i ARGANS Ltd., Chamberlain House, NASA Goddard Space Flight Center College of Optical Sciences, The Un South Dakota State University (SDS), Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom , 00044 Prascati, Italy
ARTICLE INFO	ABSTRACT
Kryworda: Sentinel-2 Radiometric validation Vicarious methodologies Inter-comparison Expert groups	Copernicus is the European Union's Earth Observation and Monitoring programme, delivering free acc operational and historical environmental data to support applications in a wide range of societal benefit To allow meaningful long-term environmental monitoring and robust decision-making, it is essential to e that satellite-retrieved products are of high quality and consistency. This paper describes the outputs international workshop on the radiometric calibration validation of the Copernicus Sentinel-2A and Sentir Multi-Spectral Instrument. A wide range of vicarious methodologies have been applied independently and compared per type of target. All methods agree on the good radiometric performance of both Sentinel-2. Sentinel-2B with respect to the mission requirements as well as on evidence of a slight bias between th instruments. Comparisons of all these results are discussed to highlight the benefits and advantages is methods as well as to propose potential improvements either for the methods themselves and/or for the


BOA Radiometry / ACIX and CMIX

ACIX: Atmospheric Correction Inter-comparison Exercise

CMIX: Cloud Mask Inter-comparison Exercise

 CEOS WGCV (Working Group on Calibration & Validation)
 initiatives to bring together AC and CM developers for Sentinel-2 and Landsat 8 imagery

BOA / S2 and CEOS ARD

CEOS Analysis-Ready Datasets The following table summarises all of the satellite EO datasets that have been assessed as CEOS Analysis Ready Data (CEOS ARD). DOI links are provided for access, along with links to further information, sample products, and the completed CEOS ARD self-assessment and peer review outcome documents.						urther	CE S <u>http://ceos.org/ard</u>	S ANALYSIS RE	ADY DATA	
Product	CEOS ARD Type	PFS Version	Agency	Mission(s)	Threshold Specification	Targ Specific		CEOS Analysis Read	y Data for Land (CARD4L) are satellite equirements and organized into a forr	data that have been proc
Landsat Collection 2	Surface Reflectance	v5.0	USGS	Landsat 4, 5, 7, 8, 9	100%	<mark>لہ</mark> 81%			additional user effort and interoperal other datasets.	
Landsat Collection 2	Surface Temperature	v5.0	USGS	Landsat 4, 5, 7, 8, 9	100%	6 83%	UNSIS REA		Product Family Specifications	
Sentinel-2 Level-2A	Surface Reflectance	v5.0	ESA	Sentinel-2A, 2B	100%	Not asse	DATA Date	Surface Reflectance a collected with multispectral sensors ating in the VIS/NIR/SWIR wavelengths.	Surface Temperature Data collected with multispectral sensors operating in the thermal infra-red (TIR)	Radar Backscatto Data collected by Synthetic Apert (SAR) sensors.
EnMAP	Surface Reflectance	v5.0	DLR	EnMAP	100%	Not asse	Thes dista	anity in the vision swite wavelengths, se typically operate with ground sample nee and resolution in the order 10-100m ever the Specification is not inherently limited to this resolution.	wavelengths. These typically operate with ground sample distance and resolution in the order 10-100m.	L'ARIJELISUIS.
							R	ead Product Family Specification >>	Read Product Family Specification >>	Read Product Family Specifica

- Landsat Collection-2 products compliant to CEOS ARD for SR at threshold level. \checkmark
- Since 25th January 2022 Sentinel-2 L2A data are Analysis Ready Data according to CEOS ARD Specifications at \checkmark Threshold Level

→ THE EUROPEAN SPACE AGENCY

Level-2H and Level-2F / Sen2Like Project

<u>GOAL</u>:

to provide **S2-like surface reflectance** with increased frequency through a harmonisation/fusion process **combining data from different sensors**.

Current Status:

combining Sentinel-2 and Landsat-8/9 using SMAC and Sen2Cor.

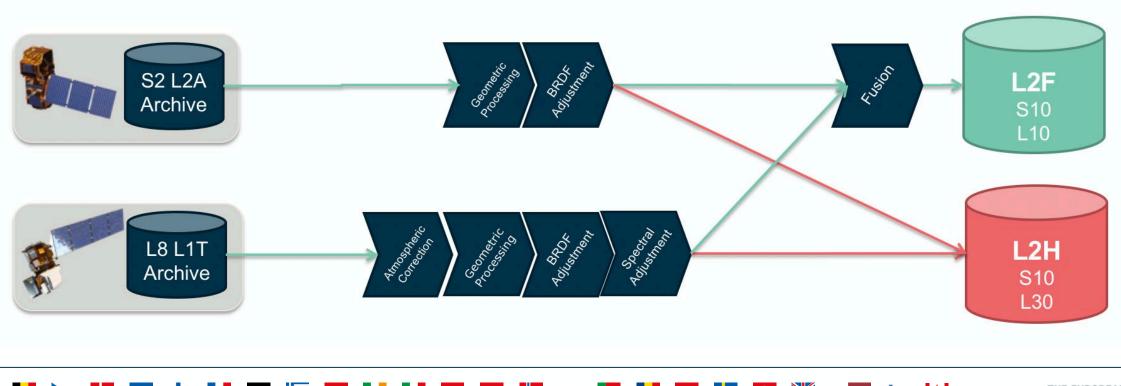
Pilot production over Belgium available for assessment.

✓ Project similar to NASA HLS [https://hls.gsfc.nasa.gov/] but instead of transforming S2 into Landsat, Sen2Like transforms Landsat (and other missions) into S2.

Sen2Like future steps:

- Integration of ASI PRISMA hyperspectral mission.
- Improving the operationalisation aspects as an on-demand processor.
- BRDF validation using specific DRONEs campaigns.

https://hls.gsfc.nasa.gov


Sen2Like software available in open-source at: https://github.com/senbox-org/sen2like

→ THE EUROPEAN SPACE AGENCY

Level-2H and Level-2F / Sen2Like Project

- Harmonisation includes consistent atmospheric corrections, spectral adjustments, BRDF adjustments and re-gridding.
- ✓ **Fusion** goes beyond bringing Landsat-8 to Sentinel-2 spatial resolution.

Level-2H and Level-2F

Example of Level-2H from Landsat

__ || | | = += += || | **=** ≝ __ || || || **__** = ≝ #= ∅ || || **__** || **=** |#| || ||

Level-2H and Level-2F

Example of Level-2F from Landsat

═╴**▋▋ ┝**▄ ┇┇ ━━ ┿╸**┃**┃ ━━ ं⋸ ═╴┃┃ ┃┃ ═╴═╴╬╴_{━━} ◙ **┃┃ ═╴┇ ┠** ∷ ═╴╘╸

Level-2H and Level-2F / Sen2Like Overview **2USGS**

Conclusion

A number of **cooperation and coordination** activities between the Copernicus Sentinel-2 & Landsat missions have been **carried out** and many are **on-going**.

On top of all the already mentioned activities, we are actively involved in international forums and in mission-dedicated forums, with the goal to continue the Sentinel-2 & Landsat cooperation activities **for the benefit of the worldwide EO users community**.

Next Steps

In the context of the next generation of land imaging satellites (i.e. Sentinel Next Generation & Landsat Next), we are investigating a **collaborative work program** for establishing ongoing **joint EO activities** on sustainable land monitoring for **cost reduction**, **better complementarity**, and **increased efficiency**.

Thank you for your attention!