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Talk overview

1. Autonomous sensor systems and deployments in MONOCLE

- So-Rad (Solar tracking Radiometry platform): Ls, Lt, Ed   →  Rrs

- HSP (Hyperspectral Pyranometer): Ed,  Eds,  Edd →   AOT

2. A new way to retrieve in situ Rrs by combining So-Rad and HSP

- Modification of Rrs algorithm (3C) to incorporate direct-diffuse 

irradiance from the HSP.

- Illustration of improved precision in Rrs .

3. Spatial scales of Rrs variability from `ships of opportunity’

- Measuring sub-pixel variability and spatial autocorrelation in Rrs.

- Advantage to using mobile platforms for satellite validation.

So-Rad

HSP



1.1   So-Rad (Solar-tracking Radiometry Platform)

• Rotating platform designed to operate 
spectroradiometers on moving vessels whilst 
avoiding sun glint. Prototype in Simis and 
Olsson 2013.

• Applications of Rrs: ecosystem monitoring and 
satellite validation (assessment of atmospheric 
correction uncertainty & sub-pixel variability).

• Stand-alone operation (except cleaning), low 
power consumption (15 W) , low cost          

(~€ 3000 + sensors).  Open-source compatible 
with Linux on a Raspberry Pi 3B.
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Ed



1.2   Spatial variability in Rrs from So-Rad on `ships of opportunity’

Plymouth Sound and near-coast, UK Danube Delta, Romania

Tagus Estuary,  PortugalLake Balaton, Hungary



1.3   Direct-diffuse irradiance from the Hyperspectral Pyranometer (HSP)

• Partitions Ed (downwelling irradiance) into direct (Edd) 
and diffuse (Eds) components.

• Primary usage: characterization of aerosol optical 
thickness (AOT).

• Incorporates a shading pattern over multiple diffuser 
optics: can be operated on moving platforms.  Prototype 
in Wood et al. 2017.



2.1   The 3C (3 glint component) Rrs algorithm 

Rrs equation in 3C:

• 3C  algorithm (Groetsch et al. 2017): Rrs
derived from spectral optimization using water 
(Albert & Mobley, 2003) and atmospheric 
(Gregg & Carder, 1990) models.

• Spectral-offset, Δ(λ): `additional spectral’  
basis functions  (Edd/Ed, Eds/Ed).

• Rationale: improved estimation of Rrs when 
Ls/Ed is not representative of surface-reflected 
radiance (wind-roughened  & scattered-cloud 
conditions).

• Current limitation: spectral shape of Edd/Ed 
and Eds/Ed based on model inversion (uses 
clear-sky model).

Conventional above-water Rrs equation: 

Example of 
`glint basis 
functions’:

Dashed lines: model-
optimized by 3C
Solid lines: measured 
by HSP



Incorporating a hyperspectral direct-diffuse pyranometer in an above-water reflectance algorithm.  

Jordan et al. 2022, Remote Sensing, 14, 2491.

2.2   A new way to retrieve in-situ Rrs by combining So-Rad and HSP

• Central idea: HSP measurements of Eds/Ed and 
Edd/Ed replaced model-optimized  glint terms in 3C.

• Hypothesis: HSP measurements will better-constrain 
the spectral-shape of glint correction

(& remove atmospheric-model dependence).

• We benchmarked 3 algorithm variants:

1. 3C (3 component glint): model optimization 
for Eds/Ed and Edd/Ed

2. DD (direct-diffuse): HSP measurements for 
Eds/Ed and Edd/Ed.

3. DD2: 2-sensor variant of DD (no Ls sensor & 
lower cost solution).



2.3  Deployment & atmospheric characterization using the HSP

• Atmospheric state variable: 
Integrated Diffuse Ratio 

(`fraction of diffuse light’)

Roscoff

Plymouth
Cherbourg

• ~ 4.5-month time series of 
in-port data from the 
Western Channel (summer 
2020).

• So-Rad and HSP deployed 
on Armorqiue (Brittany 
Ferries) & collecting (near)-
simultaneous data.

Distribution of IDR 

for deployment



2.4   Dependence of algorithm

precision on atmospheric conditions

• Assess algorithm precision over 20-minute 
measurement cycles using Rrs coefficient of variation.

• Key result: DD has significantly lower variability than 
3C in clear conditions (IDR < 0.2)  in the blue (400 nm) 
band.

• DD and 3C have comparable variability in green (560 
nm), red (665 nm), and NIR bands (865 nm).

• All algorithms have relatively high variability in 
intermediate conditions (scattered cloud). DD2 has 
higher variability than 3C and DD in overcast 

conditions.



2.5  Improved Rrs precision at blue wavelengths using the HSP

Improved precision of DD at blue wavelengths: consistent with the spectral curvature of the glint correction 
being better constrained (via HSP measurements).



3.1  Using  `ships of opportunity’ to sample sub-pixel variability for 
satellite validation

Rrs(560) collected by So-Rad within a

6hr match-up window from Lake Balaton car ferry 

OLCI pixel 

(300 m)

• Satellite validation: assessment  of `match-
ups’ between in-situ Rrs (~ point-like data)  
and satellite Rrs (information aggregated over 
pixel: 300 m for OLCI, 10-60 m for MSI).

• `Mismatch in spatial scales’ can contribute to 
uncertainty budget  in match—up analysis 
(particularly if a fixed-platform is used to 
measure Rrs). 

• Here we illustrate the advantage to using a 
mobile platform to sample sub-pixel 
variability: Lake Balaton car ferry deployment 
used as case study.



3.2   Characterizing spatial scales of in situ Rrs variability

Intrinsic variation in Rrs: 
includes instrument noise, 
algorithm uncertainty, 
temporal variation within 
match-up window.

Spatial 
variation in Rrs

`Root variogram’: dependence of STD 

Rrs on point separation

Correlation length (distance over which Rrs is spatially autocorrelated)

Empirical semi variance:

• Variogram methods were used to sample spatial variation in Rrs as a function of mean ground sample distance (GSD: h).

Fitted (Gaussian) model



3.3  Examples of root-variograms from the Lake Balaton deployment

Data from  `hypothetical match-up windows’ of 6 hrs.

Case of lower 
structural variation 
in Rrs: shorter 
correlation length, 
and lower ratio of 
spatial-intrinsic 
variance: `Patchier 
water’

Case of higher 
structural variation 
in Rrs: longer 
correlation-length, and 
higher ratio of spatial-
intrinsic variance



3.4   Summary of root-variogram structure for the Lake Balaton deployment 

• Gaussian model fits are shown (subject to fit-filtering) . Median fits in bold. Corresponds to ~ 20 (hypothetical) 
match-up windows from a 6-week deployment on the car ferry

• Broadly similar shape of variogram between spectral bands

• Correlation lengths for Rrs ~ 100-400 m. Spatial variance component ~ 20-50% of total variance.

Spatial 

variance



3.5  Percentage of Rrs variation due to spatial structure

at 300 m (OLCI pixel size)

• Approximates additional % uncertainty that a fixed 
platform would experience in match-up analysis 
(due to not sampling sub-pixel variability).

• Alternatively, approximates % reduction in 
uncertainty that sampling Rrs from a moving 
platform enables (for large N).

Variability in Rrs due to 
spatial structure at 300 m 

(strictly: integrate 
variogram curve over 
point-separation 
distribution for pixel for 
better estimate)



Summary and highlights

1. HSP and So-Rad are autonomous sensor systems, 
suitable for moving platforms that can aid 
satellite validation of Rrs in inland and coastal 
waters.

2. Combining So-Rad and the HSP in Rrs processing 
can improve the precision of in-situ Rrs (relative to 
baseline of 3C).

3. Sampling sub-pixel Rrs variability from a `ship of 
opportunity’ would reduce in-situ uncertainty by 
factor ~ 1/3 in OLCI match-up analysis (relative to 
sampling at a fixed location where water 
properties are unchanging).
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