

CMIX:

Cloud Mask Intercomparison eXercise

Sergii Skakun, Jan Wevers, Carsten Brockmann, Georgia Doxani, Matej Aleksandrov, Matej Batič, David Frantz, Ferran Gascon, Luis Gómez-Chova, Olivier Hagolle, Dan López-Puigdollers, Jérôme Louis, Matic Lubej, Gonzalo Mateo-García, Julien Osman, Devis Peressutti, Bringfried Pflug, Jernej Puc, Rudolf Richter, Jean-Claude Roger, Pat Scaramuzza, Eric Vermote, Nejc Vesel, Anže Zupanc, Lojze Žust

Clouds

- Limiting factor in optical remote sensing
- Prerequisite for high-quality high-level products
- CEOS WGCV: Working Group on Calibration & Validation
 - ACIX: Atmospheric Correction Intercomparison eXercise
 - CMIX: Cloud Mask Intercomparison eXercise

GOAL

- To inter-compare a set of cloud detection algorithms for space-borne high-spatial resolution (10-30 m) optical sensors
- Focus on Landsat 8 and Sentinel-2 data
- Not a competition, but inter-comparison

Processor	Organization	Methodology
ATCOR	DLR	Spectral tests (L8, S2)
CD-FCNN	University of Valencia	Machine learning (L8, S2)
Fmask 4.0 CCA	USGS	Spectral tests (L8, S2)
FORCE	Humboldt-Universität zu Berlin / Trier University	Spectral test + parallax (for S2) (L8, S2)
IdePix	Brockmann Consult	Spectral tests (S2)
InterSSIM	Sinergise	Machine learning + spatiotemporal context (S2)
LaSRC	NASA / University of Maryland	Spectral tests (L8, S2)
MAJA	CNES / CESBIO	Multi-temporal and spectral tests (S2)
s2cloudless	Sinergise	Machine learning (S2)
sen2cor	ESA / Telespazio France	Spectral test + auxiliary data (S2)

Distribution of Landsat 8 reference scenes

Dataset	Spatial domain	Spatial resolution	# scenes	
CESBIO	Fully classified Sentinel-2 scenes	60 m	S2: 30	Landsat 8 • GSFC_L8 • L9Riama
GSFC	Sample polygons	Polygons (vector)	L8: 6 S2: 28	PixBox_L8 Distribution of Sentinel-2 reference scenes
Hollstein	Sample polygons	Polygons (at 20 m)	S2: 59	
L8Biome	Fully classified Landsat 8 scenes	30 m	L8: 96	Sentinel-2 • CESBIO • GSFC_S2 • Hollstein
PixBox	Sample pixels	S2: 10 m L8: 30 m	S2: 29 L8: 11	• PixBox_S2

Same and the second sec

Fully classified scene

CESBIO Reference Dataset

Land
Low clouds
Cloud shadows
Water

Polygons

GSFC S2 Reference Dataset

Samples

PixBox S2 Reference Dataset

Opaque clouds

Semi-transparent clouds

Clear

Results: Sentinel-2

PA = producer's accuracy (recall); UA = user's accuracy (precision); for cloud class

Results: Landsat 8

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2

- Major findings
 - Performance varied depending on the reference data
 - Average OA for Sentinel-2: 80% to 89%
 - Average OA for Landsat 8: 80% to 98%
 - Performance improved when thin/semi-transparent clouds not considered

Fmask 4.0 CCA

FORCE

IdePIX

Check for updates

s2cloudless

Recommendations

 \bullet

- Definition of clouds
 - Cloud optical depth
- New validation/reference data
 - Consistent cloud definition
 - Cloud boundary
 - Time series
- Analysis framework
 - Sample-based vs area-based
 - Temporal analysis
 - Application-based

Network of sky imagery:

- NASA GSFC, Greenbelt, MD, USA
- Sapienza University, **Rome, Italy**
- Valencia University,
 Valencia, Spain
- Sao Paulo University,
 Sao Paulo, Brazil
- Princess Elisabeth Station, Antarctica
- WLEF, Park Falls, WI, USA

Cloud optical depth retrieval from ground-based cloud imager (Mejia et al., 2016) 12

Way Forward

1st Workshop ACIX-III Land, Aqua and CMIX-II

-- 20-21 June 2022, ESA/ESRIN, Frascati (Italy) --

https://earth.esa.int/eogateway/events/1st-workshop-of-acixiii-land-aqua-and-cmix-ii