Ground based sky camera images as a validation source for satellite cloud masking algorithms

Jan Wevers¹

C. Brockmann¹, J. Scholze¹, F. Niro⁴, A. Santamaria-Artigas², S. Skakun², E. Vermote³, S. Casadio⁴, A. M. Iannarelli⁵

¹ Brockmann Consult GmbH, ² University of Maryland College Park,

³ NASA Goddard Space Flight Center, ⁴ SERCO c/o ESA-ESRIN, ⁵SERCO

ESA Living Planet Symposium 2022, Bonn, Germany

BROCKMANN CONSULT

Overview

- Background
- Objective/Overview
- Validation site and methods preparation
- Validation results
- Limitations
- Conclusion

Background

- Validation of satellite-based cloud masks is commonly done by the algorithm developers themselves.
 - Non-independent validation
- A few attempts have been made to objectively inter-compare performances of satellite-based cloud masking algorithms (e.g., Skakun et al. 2021, Zekoll et al. 2021, Tarrio et al. 2020, Hammersson Sanchez et al. 2020, Chi & Zhang 2020).
- All these validations/inter-comparisons are based on different datasets, leading to variable results even if the same algorithm is analyzed.
 - This was shown during the Cloud Mask Intercomparison eXercise (CMIX)
- Most validation datasets are sensor dependent and don't allow cross-sensor validation of multisensor cloud detection algorithms.
- Goal: An independent validation source for cloud masking algorithms is needed, which is sensor independent

Objective / Overview

- The project was conducted in the frame of ESA's Quality assurance framework for earth observation (QA4EO).
- The objective of the project was to analyse the usage of ground-based sky cameras, as an independent validation source for satellite cloud masking algorithms.
- The scope of this work was to prototype algorithms and methods to process sky camera data and compare them with satellite-based cloud masks.
- There are two instruments for validation that have been compared:
 - 1. stereo sky camera (SC)
 - 2. Ceilometer Raymetrics Aerosol Profiler (RAP).
- The work included 4 tasks:
 - 1. Requirements and state of the art analysis
 - 2. Validation sites and methods preparation
 - 3. Experimental operations
 - 4. Evaluation and conclusion

Instrumentation setup

- A set of two cameras (stereo pair) was setup at La Sapienza University in Rome.
- The cameras use a the Omnivision (field of view is 194 (vertical). Distance around 260 mercameras are cominute between 08

Sky cameras are developed by University of Maryland & NASA

Skakun, S., Vermote, E. F., Santamaria-Artigas, A., Rountree, W. H., & Roger, J. C. (2021). An experimental sky-image-derived cloud validation dataset for Sentinel-2 and Landsat 8 satellites over NASA GSFC. International Journal of Applied Earth Observation and Geoinformation, 95, 102253.

- Sky camera two approx. 20m apart from the ceilometer (RAP)
 - comparisons between the RAP and SC based cloud detection
 - validate the SC based cloud height estimation with RAP measurements.

a 1: Marconi

Sky Camera 2: Ferm

Raymetrics Aerosol Profiler (RAP)

• Processing overview

Pre-processing of sky camera data to better match the satellite observations

- Crop: Reduce geometric distortion (increasing outside of the center).
- Rotate: The SCs are installed looking a bit northwest.
- Flip: The SC is looking from the ground up and the satellite does the opposite.

Finding an appropriate classification method

- A few methods have 0 accuracies.
 - Simple threshold on
 - Otsu thresholding ۲
 - Otsu thresholding a •
 - Implementing a line ۲ the results of the pr
 - Brightness index (BI ullet
- Training of a rando 0
 - 12 to 15 SC images ۲
 - Polygons representi ۲
 - Inside these polygor ۲
 - Overall, 11,100 sam ۲

BROCKMANN CONSULT

Validation results

• Validation of the RF classifier shows high accuracy (93-96% OA)

S	SkyCam 1 manual classification vs. SkyCam 1 auto classification								
ç	Sky Camera 1 manual classification								
matic classificatio	Class	Clear	Cloud	Sum	U A	E			
	CLEAR	30	2	32	93.8	6.2			
	CLOUD	2	27	29	93.1	6.9			
1 auto	Sum	32	29	61					
amera	ΡA	93.8	93.1		OA:	93.44			
Sky Cā	E	6.2	6.9		BOA:	93.45			

Scotts Pi: 0.868 Krippendorfs alpha: 0.869 Cohens kappa: 0.868

S	SkyCam 2 manual classification vs. SkyCam 2 auto classification							
<u>د</u>		Sky Ca	mera 2 man	ual classifica	ation			
ficatio	Class	Clear	Cloud	Sum	U A	E		
2 automatic classif	CLEAR	38	1	39	97.4	2.6		
	CLOUD	1	26	27	96.3	3.7		
	Sum	39	27	66				
amera	ΡA	97.4	96.3		OA:	96.97		
Sky Cā	Е	2.6	3.7		BOA:	96.85		
Scotts Pi: 0.937								

Scotts Pi: 0.937 Krippendorfs alpha: 0.937 Cohens kappa: 0.937

S2 Validation results – automatic SC classification

- Sentinel-2 results between 12.02.2021 and 12.02.2022
- OA is between 86% and 88%.
- These numbers are quite comparable with the validation results of sen2cor during the CMIX exercise

Sky Camera 1 automatic classification vs. Sentinel-2 L2A SCL (8', 9, '10)									
Sky Camera I									
	Class	Clear	Cloud	Sum	UA	Е			
A	CLEAR	35	7	42	83.3	16.7			
el-2 L2	CLOUD	2	24	26	92.3	7.7			
Sentine	Sum	37	31	68					
07	ΡA	94.6	77.4		OA:	86.76			
	E	5.4	22.6		BOA:	86.0			
Scotts Pi: 0.728 Krippendorfs alpha: 0.73									

Cohens kappa: 0.729

y Ca	amera 2 a	utomatic cl	assificatio Sky Cam	n vs. Senti nera 2	nel-2 L2A S	5CL (8', 9, '1	
	Class	Clear	Cloud	Sum	U A	E	
d I	CLEAR	36	5	41	87.8	12.2	
	CLOUD	3	23	26	88.5	11.5	
entine	Sum	39	28	67			
	ΡA	92.3	82.1		OA:	88.06	
	E	7.7	17.9		BOA:	87.2	
Scotts Pi: 0.751 Krippendorfs alpha: 0.753 Cohens kappa: 0.752							

Label	Classification
0	NO_DATA
1	SATURATED_OR_DEFECTIVE
2	DARK_AREA_PIXELS
3	CLOUD_SHADOWS
4	VEGETATION
5	NOT_VEGETATED
6	WATER
7	UNCLASSIFIED
8	CLOUD_MEDIUM_PROBABILITY
9	CLOUD_HIGH_PROBABILITY
10	THIN_CIRRUS
11	SNOW

S2 Validation results – manual SC classification

- Sentinel-2 results between 12.02.2021 and 12.02.2022
- OA is between 86% and 88%.
- The results for SC1 completely match those of the automatic classification, while the results for SC2 differ a tiny bit.

Comparison between RAP and SC2 (Fermi) automatic classification

- The result shows a comparably low agreement (below 80%).
- This result was a bit surprising.
- Comparison with manual classification needed

Sky Camera 2 automatic classification vs. RAP cloud top Sky Camera 2

	Class	Clear	Cloud	Sum	U A	Е
RAP	CLEAR	19	5	24	79.2	20.8
	CLOUD	3	11	14	78.6	21.4
	Sum	22	16	38		
	ΡA	86.4	68.8		OA:	78.95
	E	13.6	31.2		BOA:	77.6

Scotts Pi: 0.559 Krippendorfs alpha: 0.565 Cohens kappa: 0.56

Comparison between RAP and SC2 (Fermi) manual classification

- Agreement increased to above 84% OA
- Nevertheless, the agreement was lower than expected.

SkyCam 2 manual classification vs. RAP

• Further analysis was required

Sky Camera 2 manual classification for RAP position								
	Class	Clear	Cloud	Sum	U A	Е		
	CLEAR	20	3	23	87.0	13.0		
٩P	CLOUD	2	8	10	80.0	20.0		
R∕	Sum	22	11	33				
	ΡA	90.9	72.7		OA:	84.85		
	E	9.1	27.3		BOA:	81.8		

Scotts Pi: 0.65 Krippendorfs alpha: 0.656 Cohens kappa: 0.651

	date	time_x	skycam_class	RAP_QF
0	20210316	101002	255	11
1	20210321	101002	255	11
2	20210326	101002	0	0
3	20210405	101002	255	11
4	20210410	101002	255	11
5	20210415	101002	100	11
6	20210420	101003	0	0
7	20210425	101002	0	0
9	20210430	101002	0	0
11	20210505	101002	0	0
12	20210510	101002	0	0
13	20210515	101002	255	0
14	20210520	101002	0	0
15	20210525	101002	0	0
16	20210604	100902	0	0
17	20210609	100902	0	11
18	20210614	100902	0	0
19	20210619	100902	255	0
20	20210624	100903	255	10
21	20210629	100902	255	10
22	20210704	100902	100	10
24	20210709	100902	0	0
26	20210714	100902	255	0
28	20210719	100902	0	0
29	20210724	100902	0	0
30	20210729	100902	0	0
31	20210803	100902	0	11
32	20210808	100902	0	0
33	20210813	100902	100	10
34	20210818	100902	0	0
35	20210823	100902	100	0
36	20210828	100902	0	11
37	20210902	100902	0	0
38	20210907	100902	0	0
39	20210917	100902	255	11
40	20210922	100902	0	0
42	20210927	100902	255	0

Comparison between RAP and SC2 (Fermi) manual classification

- Tables shows matchup between RAP QF flag (RAP_QF) and classification of SC 2 (skycam_class)
- The red marked entries show disagreements in the classification
- The sky camera data for those dates have been analyzed.

Sky Camera 2 manual adjusted classification for RAP position									
Class	Clear	Cloud	Sum	U A	E				
CLEAR	21	2	23	91.3	8.7				
CLOUD	0	9	9	100.0	0.0				
Sum	21	11	32						
ΡA	100.0	81.8		OA:	93.75				
E	0.0	18.2		BOA:	90.9				

SkyCam 2 manual classification vs. RAP

Scotts Pi: 0.854 Krippendorfs alpha: 0.856 Cohens kappa: 0.855 Comparison between RAP and SC2 (Fermi) manual classification

- The most likely explanation is the location difference of 22m between the two instruments and RAP observation is a bit tilted.
- A red/green cross marks the potential location of the RAP acquisition within the SC image
- The potential location of the RAP acquisition has been manually classified for all SC2 data, to ensure a "true" comparison between the two instruments.

RAP

In-Situ Database									
	Class	Clear	Cloud	Sum	U A	E			
Sentinel-2 L2A	CLEAR	24	5	29	82.8	17.2			
	CLOUD	0	14	14	100.0	0.0			
	Sum	24	19	43					
	ΡA	100.0	73.7		OA:	88.37			
	Е	0.0	26.3		BOA:	86.85			

Sentinel-2 L2A cloud mask over SkyCam 1 manual L1C classification

Limitations

- To eliminate the bias from the S2 L2A scene classification and to compare clouds visible in the satellite image and the sky camera, a subset of the above used S2 data was manually classified for the SC1 location.
- The OA is still below 90%.
- Therefore, the question arose why there is no better agreement.
- S2 products and SC1 (as well as SC2) data for cases without matching classifications have been compared.

Scotts Pi: 0.754 Krippendorfs alpha: 0.757 Cohens kappa: 0.757

Limitations

- The images show that the cloud in the center of SC2 (Fermi) is located northeast of SC2 in the S2 L2A image.
- While the same cloud is located southwest of the center of SC1 (Marconi) and south/over SC1 in the S2 L2A product.
- The cause for this mismatch can be explained by the viewing differences of the three instruments and the location of the cloud above ground.
- The S2 L2A data have been acquired off-nadir with a VAA mean of 130.28053 and a VZA mean of 3.3807745 (purple arrow viewing direction of S2 MSI).
- The parallax between true nadir and the actual S2 location cause the cloud to be projected in north-western direction onto the ground
- Reducing the S2 and L8 observation close to nadir might help circumventing this issue

Conclusion from experimental operations

- Sky camera data provide an interesting and valuable reference source for comparison
- The strength of the data is
 - the constant acquisition (leading to a dataset with a high temporal resolution),
 - quite high classification accuracy that could be achieved by the RF classifier,
 - the comparable low costs for the instrument
- While the validation or better intercomparison results had shown a quite good agreement between the SC classification and the satellite (S2 & L8) cloud masks, the study had also revealed geometric issues that can lead to incomparability between SC and satellite data.
- Further studies are needed to analyse if these issues/disagreements can be circumvented/corrected.

Thank you for the attention!

