

Session: B1.05.1 VHR Data Quality

Date: Tuesday, 24th May 2022

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

eesa

Assessment of third-party SAR missions in the framework of the Earthnet Data Assessment Pilot project

Authors: Andrea Recchia⁽¹⁾, Davide Giudici⁽¹⁾, Laura Fioretti⁽¹⁾, Juval Cohen⁽²⁾, Jorge Jorge Ruiz⁽²⁾, Rubinder Mannan⁽³⁾, Kevin Halsall⁽³⁾, Clement Albinet⁽⁴⁾

ICLASSIFIED – For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

• aresvs

- Earthnet Data Assessment Pilot (EDAP) project
- Mission quality assessment matrix
- SAR missions quality assessment
 - ≻ IRF
 - > Radiometry
- SAR missions assessment
 - ➢ SAOCOM
 - Capella
 - ≻ PAZ
 - ≻ Iceye
- Summary

Earthnet Data Assessment Pilot project

- The Earthnet Data Assessment Pilot (EDAP) is a project that is responsible for assessing the quality and suitability of candidate missions being considered for the Earthnet Third Party Missions (TPM)
- The key objective of ESA's EDAP is to take full advantage of the increased range of available data from non-ESA operated missions and to perform an early data assessment for various missions falling into one of these following instrument domains:
 - ➢ VHR, HR and MR Optical Missions
 - LR Optical Missions
 - SAR missions
 - Atmospheric Missions

EDAP

Earthnet Data Assessment Pilot project

- The Earthnet Data Assessment Pilot (EDAP) is a project that is responsible for assessing the quality and suitability of candidate missions being considered for the Earthnet Third Party Missions (TPM)
- The key objective of ESA's EDAP is to take full advantage of the increased range of available data from non-ESA operated missions and to perform an early data assessment for various missions. that fall into one of the following instrument domains:
 - ➢ VHR, HR and MR Optical Missions
 - LR Optical Missions
 - > SAR missions
 - Atmospheric Missions

Mission Quality Assessment Matrix

- The mission quality assessment is based on specific guidelines and cover the following aspects:
 - Mission documentation review
 - Independent SAR data quality validation
- The results of the assessment are reported in dedicated mission reports that are published on the EDAP website
- The quality assessment follows a set of 'best practice' guidelines (available on EDAP website) aligned to the principles of QA4EO Framework
- The Mission Quality Assessment Matrix provides in a compact form the results of the performed validation activities.

SAR Missions Quality Assessment

- The mission documentation review is aimed at evaluating the quality of the documentation available to the users in terms of products formats, and data generation and calibration;
- SAR products availability and accessibility to users is also assessed
- Independent SAR data quality assessment is performed on a set of the third-party SAR mission datasets over calibration sites
- Tools used for SAR data quality assessment:
 - ESA Snap Toolbox (if applicable)
 - Aresys SAR Quality Toolbox

Quality parameter	Metric	Data type	Cal. Sites	
	Spatial resolution	Point Target	Mission dedicated	
IRF	Peak-to-Side Lobe ratio	Point Target	sites	
	Integrated Side Lobe ratio	Point Target	Rosamond Corner Reflector Array (California)	
Geometry	Localization	Point Target	Surat Basin	
Coomotry	Calibration constant	Point Target	(Australia)	
	Elevation Antenna Pattern	Rain Forest		
	Azimuth scalloping	Rain Forest		
Radiometry	Beam-to-beam offset	Rain Forest	⁻ Amazon, Congo	
	Polarimetric imbalance	Rain Forest		
	ENL	Rain Forest		
	Noise level	Low backscatter	Doldrums	

┿╸ ▋▋ 🔚 🔚 📕 📕 🔚 🔚 🚛 👰 🍉 📕 💥 🚼 🕂 🔚 🖬 🕍 🗰 🗰

SAR IRF quality assessment

- SAR Impulse Response Function (IRF) analysis allows to assess the quality of the SAR data processing
- SAR IRF is assessed for bright point targets (e.g., transponders or large corner reflectors) that can be clearly identified in the SAR data
- Assessed quality parameters:
 - **Resolution**: main lobe with in azimuth and range directions is compared against product spec
 - Side Lobe levels, depending on applied windowing, are compared against product spec
 - **Absolute Calibration**: the target RCS in the SAR data is compare against the characterization value
 - **Geolocation**: the target SAR coordinates are compared against the known target position

IRF Analysis

Resolution

Range resolution : 5.7806 [m] Azimuth resolution : 4.9428 [m] PSLR Range PSLR : -15.06 [dB] Azimuth PSLR : -13.1254 [dB] ISLR

Range ISLR : -12.0756 [dB] Azimuth ISLR : -10.0512 [dB]

0

10

→ THE EUROPEAN SPACE AGENCY

20

SAR radiometric quality assessment

- esa
- SAR processors introduce a set of radiometric corrections that shape both the signal and the noise levels
- The relative radiometric accuracy of the SAR data, depending on the accuracy of the applied corrections, can be verified for distributed targets with a homogeneous backscatter
- The γ^0 profiles are measured over Rain Forests data
- The noise profiles are measured over low backscatter areas and compared against theoretical or annotated values

EDAP SAR missions assessment

• In the framework of the EDAP project (2019-2021) 4 SAR missions have been evaluated and corresponding reports have been published on the EDAP website

Mission	Owner	Band	Pol	Acquisition Modes	Resolution (az x rg)	Assessed Satellites	Launch date	Notes	
CONAE				Stripmap	5/6 x 10 m	SAOCOM-1A	2018	Repeat cycle 16	
SAOCOM	(Argentina)	L	Full	TopSAR	30/100 x 10 m	SAOCOM-1B	2020	days (8 days for constellation)	
PAZ	Hisdesat (Spain)	Х	Dual	Stripmap ScanSAR Spotlight	<= 3 m <= 40 m 0.25 m (best)	PAZ	2018	Comparison with Cosmo SkyMed and TerraSAR-X data performed	
	Capella Space (USA)	V	Single	Stripmap Sliding Spotlight Staring Spotlight	1.2 x 0.75 m 1.0 x 0.5 m 1.0 x 0.3 m	Capella 3	0004	Assessed satellites operate in a polar	
CAPELLA		X				Capella 5	2021	SSO with 97° inclination	
ICEYE	lceye (Finland)	X	Single	Stripmap ScanSAR Spotlight	<= 3 m 15 x 15 m <= 0.5 m	X2, X4, X6, X7	2018-2020 (X2-X7 satellites)	Strip and Spot acquisition modes assessed	

SAOCOM mission assessment

- Product documentation in good status
- SAOCOM catalogue allowing to easily identify needed products and download/reprocess the data (depending on user permissions)
- Data quality assessment shows pretty good calibration status (geolocation accuracy can be improved)

Product Information	Product Generation	Ancillary Information	Uncertainty Characterisation	Validation
Product Details	Sensor Calibration & Characterisation Pre-Flight	Product Flags	Uncertainty Characterisation Method	Reference Data Representativeness
Availability & Accessibility	Sensor Calibration & Characterisation Post-Launch	Ancillary Data	Uncertainty Sources Included	Reference Data Quality
Product Format	Additional Processing		Uncertainty Values Provided	Validation Method
User Documentation			Geolocation Uncertainty	Validation Results
Metrological Traceability Documentation				

→ THE EUROPEAN SPACE AGENCY

CAPELLA mission assessment

- Product documentation in good status
- CAPELLA catalogue allowing to easily identify and order needed data and to perform tasking of needed acquisitions
- Data quality assessment shows good calibration status (radiometric calibration can be improved)

Product Information	Product Generation	Ancillary Information	Uncertainty Characterisation	Validation
Product Details	Sensor Calibration & Characterisation Pre-Flight	Product Flags	Uncertainty Characterisation Method	Reference Data Representativeness
Availability & Accessibility	Sensor Calibration & Characterisation Post-Launch	Ancillary Data	Uncertainty Sources Included	Reference Data Quality
Product Format	Additional Processing		Uncertainty Values Provided	Validation Method
User Documentation			Geolocation Uncertainty	Validation Results
Metrological Traceability Documentation				

→ THE EUROPEAN SPACE AGENCY

PAZ & ICEYE mission assessments

PAZ

- Basic publicly available product documentation available. No documentation describing Cal-Val activities performed by data provider.
- Data assessment shows good quality in all analyzed aspects. Quality in line with product specifications.

Product Information	Product Generation	Ancillary Information	Uncertainty Characterisation	Validation
Product Details	Sensor Calibration & Characterisation Pre-Flight	Product Flags	Uncertainty Characterisation Method	Reference Data Representativeness
Availability & Accessibility	Sensor Calibration & Characterisation Post-Launch	Ancillary Data	Uncertainty Sources Included	Reference Data Quality
Product Format	Additional Processing		Uncertainty Values Provided	Validation Method
User Documentation			Geolocation Uncertainty	Validation Results
Metrological Traceability Documentation				

ICEYE

- In addition to the publicly available product documentation, comprehensive documentation about Cal-Val activities performed by ICEYE was provided (upon request).
- Data assessment showed good quality for most analyzed aspects. Quality sometimes lower than the claimed values.

Product Information	Product Generation	Ancillary Information	Uncertainty Characterisation	Validation
Product Details	Sensor Calibration & Characterisation Pre-Flight	Product Flags	Uncertainty Characterisation Method	Reference Data Representativeness
Availability & Accessibility	Sensor Calibration & Characterisation Post-Launch	Ancillary Data	Uncertainty Sources Included	Reference Data Quality
Product Format	Additional Processing		Uncertainty Values Provided	Validation Method
User Documentation			Geolocation Uncertainty	Validation Results
Metrological Traceability Documentation				

PAZ & ICEYE mission assessments

Legend: Measured quality with respect to claimed values

Better
Slightly better
Similar or slighly worse
Worse

Geolocation accuracy (m)											
lm.	X2	2	X	1	х	6	х	7	Р	AZ	
mode	Rg.	Az.	Rg.	Az.	Rg.	Az.	Rg.	Az.	Rg.	Az.	
SC									4.1	3.3	
SM	3-13	5-9	0-11	2-9	3-7	1-4	3-7	3-6	2.7	0.2	
SL			0-14	1-6					2.7	0.25	
SLH (Spot)			2-16	1-5	2-3	0-2	0-4	5-9	2-3	0.2	

Im. mode	X2	X4	X6	X7	PAZ (single- pol)	PAZ (dual- pol)				
SC					-20					
SM	-15 13	-2613	-1411	-2015	-2322	-23.4				
SL		-1311			-18.4	-15.9				
SLH (Spot)			-1310	-1412		-19.7				

Radiometric stability (dB), ICEYE X4-X7

	· · ·		
lm. mode	X4	Х6	Х7
	-1.36 ± 0.61	-4.49 ± 0.46	-3.66 ± 0.66
SM	-7.51 ± 0.72	-5.15 ± 0.44	-6.41 ± 0.91
SIVI	-8.43 ± 0.54	-7.29 ± 0.77	-4.56 ± 0.63
	-5.13 ± 0.32		-5.26 ± 0.89
	-6.22 ± 0.19		
	-4.25 ± 0.21		
SL	-4.77 ± 0.22		
	-5.01 ± 0.17		
		-6.00 ± 0.57	-4.29 ± 0.62
		-5.21 ± 0.56	-4.60 ± 0.62
SLH		-5.09 ± 0.55	-4.58 ± 0.55
		-6.23 ± 0.63	-4.55 ± 0.60
	-		

Peak side lobe ratio (dB)

Im.	X2		X4		X6		X7		PAZ	
mode	Rg.	Az.	Rg.	Az.	Rg.	Az.	Rg.	Az.	Rg.	Az.
SC									-24 23	-27 26
SM	-15 9	-15 10	-13 9	-15 13	-12	-15 14	-13	-15	-27 26	-31 29
SL			-14 12	-14 12					-26 25	-30 29
SLH (Spot)			-17 12	-15 12	-13	-13 11	-14 13	-13 12	-26 23	-32 29

Spatial resolution (m)

Im.	X2		X4		X6		X7		PAZ	
mode	Rg.	Az.	Rg.	Az.	Rg.	Az.	Rg.	Az.	Rg.	Az.
SC									16.6	19.2
SM	0.6-1.5	2.5	0.9-1.8	2.2-2.3	0.91	2.2	1.0	2.3	1.75	2.95
SL			0.45	0.6-0.8					1.2	1.55
SLH (Spot)			0.47	0.24	0.46	0.23	0.45	0.22	0.6	1.1

PAZ-TSX-CSK data quality comparison

- Publicly available product documentation of PAZ, TerraSAR-X and Cosmo-SkyMed were used as a reference.
- Data quality of the three sensors was intercompared.
- The quality of the all analyzed PAZ, TSX and CSK data was generally in line with the values provided in the product documentation.
- As expected, the quality of PAZ and TSX was very similar. CSK showed more differences in quality due to different instrument configurations than in PAZ and TSX.

Sensor	Aq. mode	Spatial resolution	Geolocation accuracy	NESZ	Side lobes	Antenna elevation pattern	Equivalent number of looks		
PAZ	SC							L	egend
	SM								Better
	SL&HS								Average
TSX	SC								Weaker
	SM								
	SL&HS								
СЅК	SC								
	SM								

Relative performance between PAZ, TSX and CSK

- In the framework of the EDAP project, candidate missions being considered for the Earthnet Third Party Missions (TPM) are assessed by experts
- The following SAR missions have been assessed during the first EDAP project (2019-2021):
 - ➤ Saocom
 - Paz
 - Capella
 - ➢ ICEYE
- During the second EDAP project (2022-2024), the following SAR missions will be assessed:
 - ICEYE (new satellites and InSAR and ScanSAR products)
 - Spacety SAR Constellation (C-band)
 - Umbra-SAR (X-band)
 - NovaSAR-1 (S-band)